Menu Close

Show-that-a-b-b-a-a-b-b-a-1-a-b-a-b-2-ab-




Question Number 202383 by MATHEMATICSAM last updated on 25/Dec/23
Show that ((a(√b) − b(√a))/(a(√b) + b(√a))) = (1/(a − b))(a + b − 2(√(ab))).
$$\mathrm{Show}\:\mathrm{that}\:\frac{{a}\sqrt{{b}}\:−\:{b}\sqrt{{a}}}{{a}\sqrt{{b}}\:+\:{b}\sqrt{{a}}}\:=\:\frac{\mathrm{1}}{{a}\:−\:{b}}\left({a}\:+\:{b}\:−\:\mathrm{2}\sqrt{{ab}}\right). \\ $$
Answered by AST last updated on 25/Dec/23
=(((a(√b)−b(√a))^2 )/(ab(a−b))) =((a^2 b+b^2 a−2ab(√(ab)))/(ab(a−b)))=((a+b−2(√(ab)))/(a−b))
$$=\frac{\left({a}\sqrt{{b}}−{b}\sqrt{{a}}\right)^{\mathrm{2}} }{{ab}\left({a}−{b}\right)}\:=\frac{{a}^{\mathrm{2}} {b}+{b}^{\mathrm{2}} {a}−\mathrm{2}{ab}\sqrt{{ab}}}{{ab}\left({a}−{b}\right)}=\frac{{a}+{b}−\mathrm{2}\sqrt{{ab}}}{{a}−{b}} \\ $$
Answered by lorance last updated on 25/Dec/23
((a(√b) − b(√a))/(a(√b) + b(√a))) = (((√(ab))×((√a)−(√b)))/( (√(ab))×((√a)+(√b))))×(((√a)−(√b))/( (√a)−(√b)))=((((√a)−(√b))^2 )/( ((√a))^2 −((√b))^2 ))=(1/(a−b))×(a+b−2(√(ab)))
$$\frac{{a}\sqrt{{b}}\:−\:{b}\sqrt{{a}}}{{a}\sqrt{{b}}\:+\:{b}\sqrt{{a}}}\:=\:\frac{\cancel{\sqrt{{ab}}}×\left(\sqrt{{a}}−\sqrt{{b}}\right)}{\:\cancel{\sqrt{{ab}}}×\left(\sqrt{{a}}+\sqrt{{b}}\right)}×\frac{\sqrt{{a}}−\sqrt{{b}}}{\:\sqrt{{a}}−\sqrt{{b}}}=\frac{\left(\sqrt{{a}}−\sqrt{{b}}\right)^{\mathrm{2}} }{\:\left(\sqrt{{a}}\right)^{\mathrm{2}} −\left(\sqrt{{b}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}−{b}}×\left({a}+{b}−\mathrm{2}\sqrt{{ab}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *