Question Number 202436 by MATHEMATICSAM last updated on 26/Dec/23
$$\mathrm{If}\:\alpha,\:\beta\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{3}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{frame}\:\mathrm{an}\:\mathrm{equation} \\ $$$$\mathrm{whose}\:\mathrm{roots}\:\mathrm{are}\:\alpha^{\mathrm{2}} ,\:\beta^{\mathrm{2}} ,\:\gamma^{\mathrm{2}} \:.\: \\ $$
Answered by aleks041103 last updated on 26/Dec/23
$${ax}^{\mathrm{3}} +{bx}+{c}=\mathrm{0},\:{x}=\alpha,\beta,\gamma \\ $$$$\Rightarrow−\frac{{c}}{{a}}=\alpha\beta\gamma \\ $$$$\frac{{b}}{{a}}=\alpha\beta+\beta\gamma+\alpha\gamma \\ $$$$\mathrm{0}=\alpha+\beta+\gamma \\ $$$$ \\ $$$${Ax}^{\mathrm{3}} +{Bx}^{\mathrm{2}} +{Cx}+{D}=\mathrm{0},\:{x}=\alpha^{\mathrm{2}} ,\beta^{\mathrm{2}} ,\gamma^{\mathrm{2}} \\ $$$$−\frac{{D}}{{A}}=\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \gamma^{\mathrm{2}} =\left(\alpha\beta\gamma\right)^{\mathrm{2}} =\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$\frac{{C}}{{A}}=\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\beta^{\mathrm{2}} \gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \gamma^{\mathrm{2}} =\left(\alpha\beta+\beta\gamma+\alpha\gamma\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta\gamma\left(\alpha+\beta+\gamma\right)= \\ $$$$=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\mathrm{2}\frac{{c}}{{a}}.\mathrm{0}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$−\frac{{B}}{{A}}=\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} =\left(\alpha+\beta+\gamma\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta+\beta\gamma+\alpha\gamma\right)= \\ $$$$=\mathrm{0}^{\mathrm{2}} −\mathrm{2}\frac{{b}}{{a}}=−\frac{\mathrm{2}{b}}{{a}} \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{2}{b}}{{a}}{x}^{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }{x}−\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {x}^{\mathrm{3}} +\mathrm{2}{abx}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}−{c}^{\mathrm{2}} =\mathrm{0} \\ $$
Answered by Frix last updated on 27/Dec/23
$${x}^{\mathrm{3}} +{px}^{\mathrm{2}} +{qx}+{r}=\mathrm{0} \\ $$$$\left(\sqrt{{x}^{\mathrm{3}} }+{px}+{q}\sqrt{{x}}+{r}\right)\left(\sqrt{{x}^{\mathrm{3}} }−{px}+{q}\sqrt{{x}}−{r}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\left({p}^{\mathrm{2}} −\mathrm{2}{q}\right){x}^{\mathrm{2}} −\left(\mathrm{2}{pr}−{q}^{\mathrm{2}} \right){x}−{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${p}=\mathrm{0}\wedge{q}=\frac{{b}}{{a}}\wedge{r}=\frac{{c}}{{a}} \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{2}{bx}^{\mathrm{2}} }{{a}}+\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{3}} }−\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$${a}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{abx}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}−{c}^{\mathrm{2}} =\mathrm{0} \\ $$