Menu Close

If-and-are-the-roots-of-ax-3-bx-c-0-then-frame-an-equation-whose-roots-are-2-2-2-




Question Number 202436 by MATHEMATICSAM last updated on 26/Dec/23
If α, β and γ are the roots of   ax^3  + bx + c = 0 then frame an equation  whose roots are α^2 , β^2 , γ^2  .
Ifα,βandγaretherootsofax3+bx+c=0thenframeanequationwhoserootsareα2,β2,γ2.
Answered by aleks041103 last updated on 26/Dec/23
ax^3 +bx+c=0, x=α,β,γ  ⇒−(c/a)=αβγ  (b/a)=αβ+βγ+αγ  0=α+β+γ    Ax^3 +Bx^2 +Cx+D=0, x=α^2 ,β^2 ,γ^2   −(D/A)=α^2 β^2 γ^2 =(αβγ)^2 =(c^2 /a^2 )  (C/A)=α^2 β^2 +β^2 γ^2 +α^2 γ^2 =(αβ+βγ+αγ)^2 −2αβγ(α+β+γ)=  =(b^2 /a^2 )+2(c/a).0=(b^2 /a^2 )  −(B/A)=α^2 +β^2 +γ^2 =(α+β+γ)^2 −2(αβ+βγ+αγ)=  =0^2 −2(b/a)=−((2b)/a)  x^3 +((2b)/a)x^2 +(b^2 /a^2 )x−(c^2 /a^2 )=0  ⇒a^2 x^3 +2abx^2 +b^2 x−c^2 =0
ax3+bx+c=0,x=α,β,γca=αβγba=αβ+βγ+αγ0=α+β+γAx3+Bx2+Cx+D=0,x=α2,β2,γ2DA=α2β2γ2=(αβγ)2=c2a2CA=α2β2+β2γ2+α2γ2=(αβ+βγ+αγ)22αβγ(α+β+γ)==b2a2+2ca.0=b2a2BA=α2+β2+γ2=(α+β+γ)22(αβ+βγ+αγ)==022ba=2bax3+2bax2+b2a2xc2a2=0a2x3+2abx2+b2xc2=0
Answered by Frix last updated on 27/Dec/23
x^3 +px^2 +qx+r=0  ((√x^3 )+px+q(√x)+r)((√x^3 )−px+q(√x)−r)=0  x^3 −(p^2 −2q)x^2 −(2pr−q^2 )x−r^2 =0  p=0∧q=(b/a)∧r=(c/a)  x^3 +((2bx^2 )/a)+((b^2 x)/a^3 )−(c^2 /a^2 )=0  a^2 x^2 +2abx^2 +b^2 x−c^2 =0
x3+px2+qx+r=0(x3+px+qx+r)(x3px+qxr)=0x3(p22q)x2(2prq2)xr2=0p=0q=bar=cax3+2bx2a+b2xa3c2a2=0a2x2+2abx2+b2xc2=0

Leave a Reply

Your email address will not be published. Required fields are marked *