Question Number 202400 by MATHEMATICSAM last updated on 26/Dec/23
$$\mathrm{Solve}\:\mathrm{for}\:{a},\:{b}\:\mathrm{and}\:{c} \\ $$$$\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}\:+\:{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}\:+\:{a}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\: \\ $$$$\frac{\mathrm{1}}{{c}}\:+\:\frac{\mathrm{1}}{{a}\:+\:{b}}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by mr W last updated on 11/Apr/24
$${solution}\:{see}\:{Q}\mathrm{206294} \\ $$
Answered by Rasheed.Sindhi last updated on 27/Dec/23
$$\begin{cases}{\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}\:+\:{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}}\\{\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}\:+\:{a}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:}\\{\frac{\mathrm{1}}{{c}}\:+\:\frac{\mathrm{1}}{{a}\:+\:{b}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}}\end{cases}\: \\ $$$$\begin{cases}{\:\frac{{a}+{b}+{c}}{{a}\left({b}\:+\:{c}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\frac{{a}\left({b}\:+\:{c}\right)}{{a}+{b}+{c}}=\mathrm{2}}\\{\:\frac{{a}+{b}+{c}}{{b}\left({c}\:+\:{a}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\Rightarrow\frac{{b}\left({c}+{a}\right)}{{a}+{b}+{c}}=\mathrm{3}\:\:}\\{\:\frac{{a}+{b}+{c}}{{c}\left({a}\:+\:{b}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\frac{{c}\left({a}+{b}\right)}{{a}+{b}+{c}}=\mathrm{4}}\end{cases}\:\: \\ $$$$\begin{cases}{\:{a}\left({b}+{c}\right)=\mathrm{2}\left({a}+{b}+{c}\right)…\left({i}\right)}\\{\:{b}\left({c}+{a}\right)=\mathrm{3}\left({a}+{b}+{c}\right)…\left({ii}\right)\:\:\:\:}\\{\:{c}\left({a}+{b}\right)=\mathrm{4}\left({a}+{b}+{c}\right)…\left({iii}\right)}\end{cases}\:\:\: \\ $$$$\begin{cases}{\:\mathrm{6}{a}\left({b}+{c}\right)=\mathrm{12}\left({a}+{b}+{c}\right)…\left({i}\right)}\\{\:\mathrm{4}{b}\left({c}+{a}\right)=\mathrm{12}\left({a}+{b}+{c}\right)…\left({ii}\right)\:\:\:\:}\\{\:\mathrm{3}{c}\left({a}+{b}\right)=\mathrm{12}\left({a}+{b}+{c}\right)…\left({iii}\right)}\end{cases}\:\:\: \\ $$$$\mathrm{12}\left({a}+{b}+{c}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{6}{a}\left({b}+{c}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{4}{b}\left({c}+{a}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}{c}\left({a}+{b}\right) \\ $$$$\left({ii}\right)−\left({i}\right):\:{b}\left({c}+{a}\right)−{a}\left({b}\:+\:{c}\right)={a}+{b}+{c} \\ $$$$\left({iii}\right)−\left({ii}\right):\:{c}\left({a}+{b}\right)−{b}\left({c}+{a}\right)={a}+{b}+{c} \\ $$$${ab}+{bc}−{ab}−{ac}={ac}+{bc}−{bc}−{ab} \\ $$$${bc}−{ac}={ac}−{ab} \\ $$$$\:{ab}+{bc}−\mathrm{2}{ac}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{a}}−\frac{\mathrm{2}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{0} \\ $$$$\:\frac{\mathrm{6}{a}\left({b}\:+\:{c}\right)}{{a}+{b}+{c}}=\frac{\mathrm{4}{b}\left({c}+{a}\right)}{{a}+{b}+{c}}=\frac{\mathrm{3}{c}\left({a}+{b}\right)}{{a}+{b}+{c}}=\mathrm{12} \\ $$$$\mathrm{6}{a}\left({b}\:+\:{c}\right)=\mathrm{4}{b}\left({c}+{a}\right)=\mathrm{3}{c}\left({a}+{b}\right)=\mathrm{12}\left({a}+{b}+{c}\right) \\ $$$${b}+{c}=\frac{\mathrm{2}\left({a}+{b}+{c}\right)}{{a}} \\ $$$${c}+{a}=\frac{\mathrm{3}\left({a}+{b}+{c}\right)}{{b}} \\ $$$${a}+{b}=\frac{\mathrm{4}\left({a}+{b}+{c}\right)}{{c}} \\ $$$$\mathrm{2}\left({a}+{b}+{c}\right)=\frac{\mathrm{2}\left({a}+{b}+{c}\right)}{{a}}+\frac{\mathrm{3}\left({a}+{b}+{c}\right)}{{b}}+\frac{\mathrm{4}\left({a}+{b}+{c}\right)}{{c}} \\ $$$$\mathrm{2}\left({a}+{b}+{c}\right)−\frac{\mathrm{2}\left({a}+{b}+{c}\right)}{{a}}−\frac{\mathrm{3}\left({a}+{b}+{c}\right)}{{b}}−\frac{\mathrm{4}\left({a}+{b}+{c}\right)}{{c}}=\mathrm{0} \\ $$$$\left({a}+{b}+{c}\right)\left(\mathrm{2}−\frac{\mathrm{2}}{{a}}−\frac{\mathrm{3}}{{b}}−\frac{\mathrm{4}}{{c}}\right)=\mathrm{0} \\ $$$${a}+{b}+{c}=\mathrm{0}\:\vee\:\mathrm{2}−\frac{\mathrm{2}}{{a}}−\frac{\mathrm{3}}{{b}}−\frac{\mathrm{4}}{{c}}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}}{{a}}+\frac{\mathrm{3}}{{b}}+\frac{\mathrm{4}}{{c}}=\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{abc}−\mathrm{2}{bc}−\mathrm{3}{ac}−\mathrm{4}{ab}=\mathrm{0} \\ $$$$\: \\ $$$$\: \\ $$$${a}+{b}+{c}=\frac{{a}\left({b}\:+\:{c}\right)}{\mathrm{2}}=\frac{{b}\left({c}\:+\:{a}\right)}{\mathrm{3}}=\frac{{c}\left({a}\:+\:{b}\right)}{\mathrm{4}} \\ $$$${s}=\frac{{a}\left({s}−{a}\right)}{\mathrm{2}}=\frac{{b}\left({s}−{b}\right)}{\mathrm{3}}=\frac{{c}\left({s}−{c}\right)}{\mathrm{4}} \\ $$$${s}^{\mathrm{3}} =\frac{{a}\left({s}−{a}\right)}{\mathrm{2}}\centerdot\frac{{b}\left({s}−{b}\right)}{\mathrm{3}}\centerdot\frac{{c}\left({s}−{c}\right)}{\mathrm{4}} \\ $$$$\:\:\:\:=\frac{{abc}}{\mathrm{24}}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right) \\ $$$$…. \\ $$
Answered by Frix last updated on 26/Dec/23
$$\mathrm{Simply}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{for}\:{a},\:\mathrm{insert}\:\mathrm{and}\:\mathrm{solve} \\ $$$$\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{for}\:{b},\:\mathrm{insert}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{for}\:{c} \\ $$$${a}=\frac{\mathrm{23}}{\mathrm{10}}\:\:\:\:\:{b}=\frac{\mathrm{23}}{\mathrm{6}}\:\:\:\:\:{c}=\frac{\mathrm{23}}{\mathrm{2}} \\ $$