Menu Close

Solve-for-a-b-and-c-1-a-1-b-c-1-2-1-b-1-c-a-1-3-1-c-1-a-b-1-4-




Question Number 202400 by MATHEMATICSAM last updated on 26/Dec/23
Solve for a, b and c  (1/a) + (1/(b + c)) = (1/2)  (1/b) + (1/(c + a)) = (1/3)   (1/c) + (1/(a + b)) = (1/4)
Solvefora,bandc1a+1b+c=121b+1c+a=131c+1a+b=14
Commented by mr W last updated on 11/Apr/24
solution see Q206294
solutionseeQ206294
Answered by Rasheed.Sindhi last updated on 27/Dec/23
 { (((1/a) + (1/(b + c)) = (1/2))),(((1/b) + (1/(c + a)) = (1/3) )),(((1/c) + (1/(a + b)) = (1/4))) :}    { (( ((a+b+c)/(a(b + c))) = (1/2)⇒((a(b + c))/(a+b+c))=2)),(( ((a+b+c)/(b(c + a))) = (1/3)⇒((b(c+a))/(a+b+c))=3  )),(( ((a+b+c)/(c(a + b))) = (1/4)⇒((c(a+b))/(a+b+c))=4)) :}     { (( a(b+c)=2(a+b+c)...(i))),(( b(c+a)=3(a+b+c)...(ii)    )),(( c(a+b)=4(a+b+c)...(iii))) :}      { (( 6a(b+c)=12(a+b+c)...(i))),(( 4b(c+a)=12(a+b+c)...(ii)    )),(( 3c(a+b)=12(a+b+c)...(iii))) :}     12(a+b+c)                          = 6a(b+c)                          = 4b(c+a)                          =3c(a+b)  (ii)−(i): b(c+a)−a(b + c)=a+b+c  (iii)−(ii): c(a+b)−b(c+a)=a+b+c  ab+bc−ab−ac=ac+bc−bc−ab  bc−ac=ac−ab   ab+bc−2ac=0  (1/a)−(2/b)+(1/c)=0   ((6a(b + c))/(a+b+c))=((4b(c+a))/(a+b+c))=((3c(a+b))/(a+b+c))=12  6a(b + c)=4b(c+a)=3c(a+b)=12(a+b+c)  b+c=((2(a+b+c))/a)  c+a=((3(a+b+c))/b)  a+b=((4(a+b+c))/c)  2(a+b+c)=((2(a+b+c))/a)+((3(a+b+c))/b)+((4(a+b+c))/c)  2(a+b+c)−((2(a+b+c))/a)−((3(a+b+c))/b)−((4(a+b+c))/c)=0  (a+b+c)(2−(2/a)−(3/b)−(4/c))=0  a+b+c=0 ∨ 2−(2/a)−(3/b)−(4/c)=0                              (2/a)+(3/b)+(4/c)=2                           2abc−2bc−3ac−4ab=0        a+b+c=((a(b + c))/2)=((b(c + a))/3)=((c(a + b))/4)  s=((a(s−a))/2)=((b(s−b))/3)=((c(s−c))/4)  s^3 =((a(s−a))/2)∙((b(s−b))/3)∙((c(s−c))/4)      =((abc)/(24))(s−a)(s−b)(s−c)  ....
{1a+1b+c=121b+1c+a=131c+1a+b=14{a+b+ca(b+c)=12a(b+c)a+b+c=2a+b+cb(c+a)=13b(c+a)a+b+c=3a+b+cc(a+b)=14c(a+b)a+b+c=4{a(b+c)=2(a+b+c)(i)b(c+a)=3(a+b+c)(ii)c(a+b)=4(a+b+c)(iii){6a(b+c)=12(a+b+c)(i)4b(c+a)=12(a+b+c)(ii)3c(a+b)=12(a+b+c)(iii)12(a+b+c)=6a(b+c)=4b(c+a)=3c(a+b)(ii)(i):b(c+a)a(b+c)=a+b+c(iii)(ii):c(a+b)b(c+a)=a+b+cab+bcabac=ac+bcbcabbcac=acabab+bc2ac=01a2b+1c=06a(b+c)a+b+c=4b(c+a)a+b+c=3c(a+b)a+b+c=126a(b+c)=4b(c+a)=3c(a+b)=12(a+b+c)b+c=2(a+b+c)ac+a=3(a+b+c)ba+b=4(a+b+c)c2(a+b+c)=2(a+b+c)a+3(a+b+c)b+4(a+b+c)c2(a+b+c)2(a+b+c)a3(a+b+c)b4(a+b+c)c=0(a+b+c)(22a3b4c)=0a+b+c=022a3b4c=02a+3b+4c=22abc2bc3ac4ab=0a+b+c=a(b+c)2=b(c+a)3=c(a+b)4s=a(sa)2=b(sb)3=c(sc)4s3=a(sa)2b(sb)3c(sc)4=abc24(sa)(sb)(sc).
Answered by Frix last updated on 26/Dec/23
Simply solve the 1^(st)  for a, insert and solve  the 2^(nd)  for b, insert and solve the 3^(rd)  for c  a=((23)/(10))     b=((23)/6)     c=((23)/2)
Simplysolvethe1stfora,insertandsolvethe2ndforb,insertandsolvethe3rdforca=2310b=236c=232

Leave a Reply

Your email address will not be published. Required fields are marked *