Menu Close

If-the-difference-of-two-roots-of-x-2-lx-m-0-is-1-then-prove-that-l-2-4m-2-1-2m-2-




Question Number 202459 by MATHEMATICSAM last updated on 27/Dec/23
If the difference of two roots of   x^2  − lx + m = 0 is 1 then prove that  l^2  + 4m^2  = (1 + 2m)^2  .
Ifthedifferenceoftworootsofx2lx+m=0is1thenprovethatl2+4m2=(1+2m)2.
Answered by aleks041103 last updated on 27/Dec/23
x_(1,2) =(1/2)(l±(√(l^2 −4m)))  ⇒∣x_1 −x_2 ∣=(√(l^2 −4m))=1  ⇒l^2 −4m=1  ⇒l^2 =1+4m  ⇒l^2 +4m^2 =1+4m+4m^2 =1+2(1)(2m)+(2m)^2   ⇒l^2 +4m^2 =(1+2m)^2
x1,2=12(l±l24m)⇒∣x1x2∣=l24m=1l24m=1l2=1+4ml2+4m2=1+4m+4m2=1+2(1)(2m)+(2m)2l2+4m2=(1+2m)2
Answered by Rasheed.Sindhi last updated on 27/Dec/23
roots: α, α−1  (say)  α+( α−1)=l ∧ α(α−1)=m  l=2α−1  ∧  m=α(α−1)  • l^2  + 4m^2  = (1 + 2m)^2   lhs: (2α−1)^2 +4(α(α−1))^2          =4α^4 −8α^3 +8α^2 −4α+1  rhs: (1+2α(α−1) )^2 =(1+2α^2 −2α)^2             =4α^4 −8α^3 +8α^2 −4α+1  ∵ lhs=rhs  ∴ proved
roots:α,α1(say)α+(α1)=lα(α1)=ml=2α1m=α(α1)l2+4m2=(1+2m)2lhs:(2α1)2+4(α(α1))2=4α48α3+8α24α+1rhs:(1+2α(α1))2=(1+2α22α)2=4α48α3+8α24α+1lhs=rhsproved
Answered by witcher3 last updated on 27/Dec/23
x_2 −x_1 =1  ⇒x_2 ^2 +x_1 ^2 −2x_1 x_2 =1  =x_1 ^2 +x_2 ^2 −2m=1  x_1 ^2 +x_2 ^2 =(x_1 +x_2 )^2 −2x_1 x_2 =l^2 −2m  ⇒l^2 −2m−2m=1  ⇒l^2 +4m^2 =1+4m+4m^2 =(2m+1)^2
x2x1=1x22+x122x1x2=1=x12+x222m=1x12+x22=(x1+x2)22x1x2=l22ml22m2m=1l2+4m2=1+4m+4m2=(2m+1)2

Leave a Reply

Your email address will not be published. Required fields are marked *