Menu Close

i-1-n-x-y-i-x-y-1-x-y-2-x-y-n-x-1-y-1-x-2-y-2-x-n-y-n-please-it-s-correct-




Question Number 202551 by aba last updated on 29/Dec/23
Σ_(i=1) ^n (x+y)_i =(x+y)_1 +(x+y)_2 +...(x+y)_n                        =x_1 +y_1 +x_2 +y_2 +...+x_n +y_n    please it′s correct ?
$$\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{x}+\mathrm{y}\right)_{\mathrm{i}} =\left(\mathrm{x}+\mathrm{y}\right)_{\mathrm{1}} +\left(\mathrm{x}+\mathrm{y}\right)_{\mathrm{2}} +…\left(\mathrm{x}+\mathrm{y}\right)_{\mathrm{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{x}_{\mathrm{1}} +\mathrm{y}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\mathrm{y}_{\mathrm{2}} +…+\mathrm{x}_{\mathrm{n}} +\mathrm{y}_{\mathrm{n}} \: \\ $$$$\mathrm{please}\:\mathrm{it}'\mathrm{s}\:\mathrm{correct}\:? \\ $$$$ \\ $$
Commented by mr W last updated on 29/Dec/23
it depends on what you mean with  (x+y)_i . if you mean (x+y)_i =x_i +y_i ,  then it′s certainly correct.
$${it}\:{depends}\:{on}\:{what}\:{you}\:{mean}\:{with} \\ $$$$\left({x}+{y}\right)_{{i}} .\:{if}\:{you}\:{mean}\:\left({x}+{y}\right)_{{i}} ={x}_{{i}} +{y}_{{i}} , \\ $$$${then}\:{it}'{s}\:{certainly}\:{correct}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *