Menu Close

If-b-a-b-3a-b-c-2b-c-a-3c-a-2a-b-3c-a-b-c-0-then-show-that-a-b-c-




Question Number 202540 by MATHEMATICSAM last updated on 29/Dec/23
If (b/(a + b)) = ((3a − b − c)/(2b + c − a)) = ((3c − a)/(2a − b + 3c))   [a + b + c ≠ 0] then show that a = b = c.
$$\mathrm{If}\:\frac{{b}}{{a}\:+\:{b}}\:=\:\frac{\mathrm{3}{a}\:−\:{b}\:−\:{c}}{\mathrm{2}{b}\:+\:{c}\:−\:{a}}\:=\:\frac{\mathrm{3}{c}\:−\:{a}}{\mathrm{2}{a}\:−\:{b}\:+\:\mathrm{3}{c}}\: \\ $$$$\left[{a}\:+\:{b}\:+\:{c}\:\neq\:\mathrm{0}\right]\:\mathrm{then}\:\mathrm{show}\:\mathrm{that}\:{a}\:=\:{b}\:=\:{c}. \\ $$
Answered by som(math1967) last updated on 29/Dec/23
 (b/(a+b))=((3a−b−c)/(2b+c−a))=((3c−a)/(2a−b+3c))  ((3b)/(3a+3b))=((3a−b−c)/(2b+c−a))=((3c−a)/(2a−b+3c))  ∴ each ratio  =((3b+3a−b−c+3c−a)/(3a+3b+2b+c−a+2a−b+3c))  =((2(a+b+c))/(4(a+b+c)))=(1/2)   [(a+b+c)≠0]  ∴(b/(a+b))=(1/2)⇒2b=a+b∴a=b  again ((3c−a)/(2a−b+3c))=(1/2)  ⇒6c−2a=2a−a+3c  [∵ a=b]  ⇒3c=3a ∴c=a     ∴a=b=c
$$\:\frac{{b}}{{a}+{b}}=\frac{\mathrm{3}{a}−{b}−{c}}{\mathrm{2}{b}+{c}−{a}}=\frac{\mathrm{3}{c}−{a}}{\mathrm{2}{a}−{b}+\mathrm{3}{c}} \\ $$$$\frac{\mathrm{3}{b}}{\mathrm{3}{a}+\mathrm{3}{b}}=\frac{\mathrm{3}{a}−{b}−{c}}{\mathrm{2}{b}+{c}−{a}}=\frac{\mathrm{3}{c}−{a}}{\mathrm{2}{a}−{b}+\mathrm{3}{c}} \\ $$$$\therefore\:{each}\:{ratio} \\ $$$$=\frac{\mathrm{3}{b}+\mathrm{3}{a}−{b}−{c}+\mathrm{3}{c}−{a}}{\mathrm{3}{a}+\mathrm{3}{b}+\mathrm{2}{b}+{c}−{a}+\mathrm{2}{a}−{b}+\mathrm{3}{c}} \\ $$$$=\frac{\mathrm{2}\left({a}+{b}+{c}\right)}{\mathrm{4}\left({a}+{b}+{c}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\left[\left({a}+{b}+{c}\right)\neq\mathrm{0}\right] \\ $$$$\therefore\frac{{b}}{{a}+{b}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{2}{b}={a}+{b}\therefore{a}={b} \\ $$$${again}\:\frac{\mathrm{3}{c}−{a}}{\mathrm{2}{a}−{b}+\mathrm{3}{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{6}{c}−\mathrm{2}{a}=\mathrm{2}{a}−{a}+\mathrm{3}{c}\:\:\left[\because\:{a}={b}\right] \\ $$$$\Rightarrow\mathrm{3}{c}=\mathrm{3}{a}\:\therefore{c}={a} \\ $$$$\:\:\:\therefore{a}={b}={c}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *