Menu Close

find-x-




Question Number 202614 by a.lgnaoui last updated on 30/Dec/23
find x
findx
Commented by a.lgnaoui last updated on 30/Dec/23
Commented by a.lgnaoui last updated on 31/Dec/23
(x+5)sin 𝛟=7sin 𝛌+xsin 𝛟       (1)  5sin 𝛟          =7sin 𝛌                        (2)      AB^2 =AC^2 +BC^2 −2AC.BC.cos 𝛟       7^2 =  (x+5cos 𝛟)^2 +(5sin 𝛟)^2     49=x^2 +10xcos 𝛟+25    24=x^2 +10xcos 𝛟   ; cos 𝛟=((24−x^2 )/(10x))    49=x^2 +(x+5)^2 −2x(x+5)cos 𝛟        x^3 +15x^2 +26x−240=0                    ⇒              x=3
(x+5)sin\boldsymbolφ=7sin\boldsymbolλ+xsin\boldsymbolφ(1)5sin\boldsymbolφ=7sin\boldsymbolλ(2)\boldsymbolAB2=\boldsymbolAC2+\boldsymbolBC22\boldsymbolAC.\boldsymbolBC.cos\boldsymbolφ72=(\boldsymbolx+5cos\boldsymbolφ)2+(5sin\boldsymbolφ)249=x2+10\boldsymbolxcos\boldsymbolφ+2524=\boldsymbolx2+10\boldsymbolxcos\boldsymbolφ;cos\boldsymbolφ=24\boldsymbolx210\boldsymbolx49=\boldsymbolx2+(\boldsymbolx+5)22\boldsymbolx(\boldsymbolx+5)cos\boldsymbolφ\boldsymbolx3+15\boldsymbolx2+26\boldsymbolx240=0\boldsymbolx=3
Commented by a.lgnaoui last updated on 31/Dec/23
Answered by mr W last updated on 31/Dec/23
cos α=−cos β  ((x^2 +(x+5)^2 −7^2 )/(2x(x+5)))=−((x^2 +5^2 −7^2 )/(2×5x))  x^3 +15x^2 +26x−240=0  (x−3)(x+8)(x+10)=0  ⇒x=3 ✓
cosα=cosβx2+(x+5)2722x(x+5)=x2+52722×5xx3+15x2+26x240=0(x3)(x+8)(x+10)=0x=3
Commented by mr W last updated on 31/Dec/23
Answered by AST last updated on 30/Dec/23
7^2 =5^2 +x^2 −10xcos(θ)⇒24=x^2 −10xcos(θ)  7^2 =x^2 +(5+x)^2 −2x(5+x)cos(180−θ)  ⇒49=x^2 +25+10x+x^2 +10xcos(θ)+2x^2 cos(θ)  ⇒24=2x^2 +10x+10xcos(θ)+2x^2 cos(θ)  ⇒x+10+20cos(θ)+2xcos(θ)=0  x(1+2cos(θ))=−10(1+2cos(θ)  x=−10 or cos(θ)=((−1)/2)  ⇒x^2 +5x−24=0⇒x=3  [θ is the angle between length (5+x) and (x)]
72=52+x210xcos(θ)24=x210xcos(θ)72=x2+(5+x)22x(5+x)cos(180θ)49=x2+25+10x+x2+10xcos(θ)+2x2cos(θ)24=2x2+10x+10xcos(θ)+2x2cos(θ)x+10+20cos(θ)+2xcos(θ)=0x(1+2cos(θ))=10(1+2cos(θ)x=10orcos(θ)=12x2+5x24=0x=3[θistheanglebetweenlength(5+x)and(x)]

Leave a Reply

Your email address will not be published. Required fields are marked *