Menu Close

If-I-n-denotes-z-n-e-1-z-dz-then-show-that-n-1-I-n-I-0-e-1-z-1-z-2-2-z-3-n-z-n-1-




Question Number 202592 by Calculusboy last updated on 30/Dec/23
 If  I_n  denotes ∫z^n e^(1/z) dz, then show that  (n+1)!I_n =I_0 +e^(1/z) (1∙!z^2 +2∙!z^3 +∙∙∙+n!∙z^(n+1) )
$$\:\boldsymbol{{If}}\:\:\boldsymbol{{I}}_{\boldsymbol{{n}}} \:\boldsymbol{{denotes}}\:\int\boldsymbol{{z}}^{\boldsymbol{{n}}} \boldsymbol{{e}}^{\frac{\mathrm{1}}{\boldsymbol{{z}}}} \boldsymbol{{dz}},\:\boldsymbol{{then}}\:\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\left(\boldsymbol{{n}}+\mathrm{1}\right)!\boldsymbol{{I}}_{\boldsymbol{{n}}} =\boldsymbol{{I}}_{\mathrm{0}} +\boldsymbol{{e}}^{\frac{\mathrm{1}}{\boldsymbol{{z}}}} \left(\mathrm{1}\centerdot!\boldsymbol{{z}}^{\mathrm{2}} +\mathrm{2}\centerdot!\boldsymbol{{z}}^{\mathrm{3}} +\centerdot\centerdot\centerdot+\boldsymbol{{n}}!\centerdot\boldsymbol{{z}}^{\boldsymbol{{n}}+\mathrm{1}} \right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *