Question Number 202589 by mnjuly1970 last updated on 30/Dec/23
$$ \\ $$$$\:\:\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}\:+\:\mathrm{2}{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right)\right)=?\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 30/Dec/23
$$\:{Yes}\:{sir}\:\:{you}\:{are}\:{right}\:\cancel{\underline{\underbrace{\boldsymbol{\mathfrak{Y}}}}} \\ $$
Commented by MrGHK last updated on 30/Dec/23
$$\boldsymbol{\mathrm{sir}},\boldsymbol{\mathrm{dont}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{think}}\:\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{diverves}}\:? \\ $$
Answered by witcher3 last updated on 30/Dec/23
$$\:\frac{\mathrm{1}}{\mathrm{k}}+\mathrm{2ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2k}}\right)\sim\frac{\mathrm{1}}{\mathrm{k}}+\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2k}}+\frac{\mathrm{1}}{\mathrm{4k}^{\mathrm{2}} }+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right)\right) \\ $$$$\sim\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\right) \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }\:\:\:\Sigma\mathrm{U}_{\mathrm{n}} \:\mathrm{cv}\Rightarrow\Omega\:\mathrm{existe} \\ $$$$\left.\Omega=\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}+\mathrm{2ln}\left(\frac{\mathrm{2k}−\mathrm{1}}{\mathrm{2k}}\right)\right) \\ $$$$\Omega_{\mathrm{N}} =\mathrm{H}_{\mathrm{N}} +\mathrm{2ln}\left(\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\prod}}\left(\frac{\mathrm{2k}−\mathrm{1}}{\mathrm{2k}}\right)\right)=\mathrm{H}_{\mathrm{N}} +\mathrm{2ln}\left(\frac{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\prod}}\left(\mathrm{k}−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{N}} {\prod}}\left(\mathrm{k}\right)}\right) \\ $$$$=\mathrm{H}_{\mathrm{N}} +\mathrm{2ln}\left(\frac{\Gamma\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\mathrm{N}+\mathrm{1}\right)}\right) \\ $$$$=\mathrm{H}_{\mathrm{N}} +\mathrm{ln}\left(\frac{\Gamma\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{N}\right).\mathrm{N}}\right)−\mathrm{2ln}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$=\mathrm{H}_{\mathrm{N}} −\mathrm{ln}\left(\mathrm{N}\right)+\mathrm{2ln}\left(\frac{\Gamma\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{N}\right).\sqrt{\mathrm{N}}}\right)−\mathrm{2ln}\left(\sqrt{\pi}\right) \\ $$$$\Omega=\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}}\Omega_{\mathrm{N}} =\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{H}_{\mathrm{N}} −\mathrm{ln}\left(\mathrm{N}\right)−\mathrm{ln}\left(\pi\right)\right) \\ $$$$+\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}log}\left(\frac{\Gamma\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{N}\right)\sqrt{\mathrm{N}}}\right)− \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{H}_{\mathrm{x}} −\mathrm{ln}\left(\mathrm{x}\right)=\gamma \\ $$$$\Gamma\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)\sim\sqrt{\mathrm{2}\pi}\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{e}^{−\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\Gamma\left(\mathrm{N}\right)\:\sim\sqrt{\mathrm{2}\pi}\mathrm{N}^{\mathrm{N}} \mathrm{e}^{−\mathrm{N}} \\ $$$$\Omega=\gamma−\mathrm{log}\left(\pi\right)+\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}}.\mathrm{2log}\left(\frac{\sqrt{\mathrm{2}\pi}\left(\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{e}^{−\mathrm{N}−\frac{\mathrm{1}}{\mathrm{2}}} }{\:\sqrt{\mathrm{2}\pi}.\mathrm{N}^{\mathrm{N}} \mathrm{e}^{−\mathrm{N}} .\sqrt{\mathrm{N}}}\right) \\ $$$$\gamma−\mathrm{log}\left(\pi\right)+\underset{\mathrm{N}\rightarrow\infty} {\mathrm{lim}}.\mathrm{2log}\left(\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2N}}\right)^{\mathrm{N}} .\frac{\sqrt{\mathrm{N}+\frac{\mathrm{1}}{\mathrm{2}}}}{\mathrm{N}}.\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right) \\ $$$$=\gamma−\mathrm{log}\left(\pi\right) \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}}+\mathrm{2log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2k}}\right)=\gamma−\mathrm{log}\left(\pi\right) \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 31/Dec/23
$$\: \\ $$
Commented by witcher3 last updated on 31/Dec/23
$$\mathrm{thank}\:\mathrm{You}\:\mathrm{sir}\:\mathrm{have}\:\mathrm{a}\:\mathrm{nice}\:\mathrm{day} \\ $$