Menu Close

Question-202605




Question Number 202605 by hardmath last updated on 30/Dec/23
Commented by mr W last updated on 30/Dec/23
what do you mean when you write  max_(=b)  min_(=a)  (...) ?
$${what}\:{do}\:{you}\:{mean}\:{when}\:{you}\:{write} \\ $$$$\underset{={b}} {{max}}\:\underset{={a}} {{min}}\:\left(…\right)\:? \\ $$
Commented by hardmath last updated on 30/Dec/23
dear professor,    In the given expression, the maximum value is for b, and the minimum value is for a
$$\mathrm{dear}\:\mathrm{professor}, \\ $$$$ \\ $$In the given expression, the maximum value is for b, and the minimum value is for a
Commented by mr W last updated on 30/Dec/23
x=±1
$${x}=\pm\mathrm{1} \\ $$
Answered by mr W last updated on 30/Dec/23
we replace a, b, x with x, y, k.  f(x,y)=x^2 −2xy−y^2 −2kx+10ky     =(x−y−k)^2 −2y^2 +8ky−k^2   f_(min) is when x−y−k=0  f(x,y)=−(y+x−5k)^2 +2x^2 −12kx+25k^2   f_(max)  is when x+y−5k=0  ⇒x=3k, y=2k  (3k)^2 −2(3k)(2k)−(2k)^2 −2k(3k)+10k(2k)=7  k^2 =1  ⇒k=±1
$${we}\:{replace}\:{a},\:{b},\:{x}\:{with}\:{x},\:{y},\:{k}. \\ $$$${f}\left({x},{y}\right)={x}^{\mathrm{2}} −\mathrm{2}{xy}−{y}^{\mathrm{2}} −\mathrm{2}{kx}+\mathrm{10}{ky} \\ $$$$\:\:\:=\left({x}−{y}−{k}\right)^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} +\mathrm{8}{ky}−{k}^{\mathrm{2}} \\ $$$${f}_{{min}} {is}\:{when}\:{x}−{y}−{k}=\mathrm{0} \\ $$$${f}\left({x},{y}\right)=−\left({y}+{x}−\mathrm{5}{k}\right)^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{kx}+\mathrm{25}{k}^{\mathrm{2}} \\ $$$${f}_{{max}} \:{is}\:{when}\:{x}+{y}−\mathrm{5}{k}=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{3}{k},\:{y}=\mathrm{2}{k} \\ $$$$\left(\mathrm{3}{k}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{3}{k}\right)\left(\mathrm{2}{k}\right)−\left(\mathrm{2}{k}\right)^{\mathrm{2}} −\mathrm{2}{k}\left(\mathrm{3}{k}\right)+\mathrm{10}{k}\left(\mathrm{2}{k}\right)=\mathrm{7} \\ $$$${k}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{k}=\pm\mathrm{1} \\ $$
Commented by hardmath last updated on 30/Dec/23
cool dear professor thank you
$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *