Menu Close

how-to-use-the-fewest-2-to-make-2024-you-only-can-use-2-and-as-the-following-2-2-2-2-2-2-2-2-2-2-2-2-2-2024-totally-use-thirteen-2-




Question Number 202648 by liuxinnan last updated on 31/Dec/23
how to use the fewest “2” to make 2024  you only can use “2” and − + × / ( ) !   ^�  ...  as the following        2×2×2((2×2)!−2/2)(2×(2+2/2)!−2/2)=2024  totally use thirteen “ 2”
$${how}\:{to}\:{use}\:{the}\:{fewest}\:“\mathrm{2}''\:{to}\:{make}\:\mathrm{2024} \\ $$$${you}\:{only}\:{can}\:{use}\:“\mathrm{2}''\:{and}\:−\:+\:×\:/\:\left(\:\right)\:!\:\:\hat {\:}\:… \\ $$$${as}\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\mathrm{2}×\mathrm{2}×\mathrm{2}\left(\left(\mathrm{2}×\mathrm{2}\right)!−\mathrm{2}/\mathrm{2}\right)\left(\mathrm{2}×\left(\mathrm{2}+\mathrm{2}/\mathrm{2}\right)!−\mathrm{2}/\mathrm{2}\right)=\mathrm{2024} \\ $$$${totally}\:{use}\:{thirteen}\:“\:\mathrm{2}'' \\ $$
Commented by Frix last updated on 31/Dec/23
You can use the subfactorial !2=1  2024=2^(2+!2) (2^2^(2+!2)  −2−!2)     [9]  btw  2023=(2^(2+!2) −!2)(2^2^2  +!2)^2      [9]  2025=(2+!2)^2^2  (2^2 +!2)^2      [8]
$$\mathrm{You}\:\mathrm{can}\:\mathrm{use}\:\mathrm{the}\:\mathrm{subfactorial}\:!\mathrm{2}=\mathrm{1} \\ $$$$\mathrm{2024}=\mathrm{2}^{\mathrm{2}+!\mathrm{2}} \left(\mathrm{2}^{\mathrm{2}^{\mathrm{2}+!\mathrm{2}} } −\mathrm{2}−!\mathrm{2}\right)\:\:\:\:\:\left[\mathrm{9}\right] \\ $$$$\mathrm{btw} \\ $$$$\mathrm{2023}=\left(\mathrm{2}^{\mathrm{2}+!\mathrm{2}} −!\mathrm{2}\right)\left(\mathrm{2}^{\mathrm{2}^{\mathrm{2}} } +!\mathrm{2}\right)^{\mathrm{2}} \:\:\:\:\:\left[\mathrm{9}\right] \\ $$$$\mathrm{2025}=\left(\mathrm{2}+!\mathrm{2}\right)^{\mathrm{2}^{\mathrm{2}} } \left(\mathrm{2}^{\mathrm{2}} +!\mathrm{2}\right)^{\mathrm{2}} \:\:\:\:\:\left[\mathrm{8}\right] \\ $$
Commented by liuxinnan last updated on 31/Dec/23
real?
$${real}? \\ $$
Commented by MathematicalUser2357 last updated on 06/Jan/24
Yes! The excalmation mark (!) is subfactorial or factorial!
$$\mathrm{Yes}!\:\mathrm{The}\:\mathrm{excalmation}\:\mathrm{mark}\:\left(!\right)\:\mathrm{is}\:\mathrm{subfactorial}\:\mathrm{or}\:\mathrm{factorial}! \\ $$
Commented by liuxinnan last updated on 06/Jan/24
Commented by liuxinnan last updated on 06/Jan/24
I get it
$${I}\:{get}\:{it} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *