Menu Close

If-x-2-y-2-2023-2024-amp-x-y-N-how-many-set-x-y-




Question Number 202677 by BaliramKumar last updated on 31/Dec/23
  If x^2  − y^2  = 2023^(2024)  & x, y ∈ N  how many set{x, y}
Ifx2y2=20232024&x,yNhowmanyset{x,y}
Answered by AST last updated on 31/Dec/23
x^2 −y^2 ≡7^(2024) ×17^(4048) =(x−y)(x+y)  ⇒x−y=7^a 17^b  ∧x+y=7^(2024−a) 17^(4048−b)   ⇒(x,y)=(((7^(2024−a) 17^(4048−b) +7^a 17^b )/2),((7^(2024−a) 17^(4048−b) −7^a 17^b )/2))  such that x≥y ⇒a∈{0,1,2,...,2024};  b∈{0,1,2,...,4048}⇒There are ((4049×2025−1)/2)
x2y272024×174048=(xy)(x+y)xy=7a17bx+y=72024a174048b(x,y)=(72024a174048b+7a17b2,72024a174048b7a17b2)suchthatxya{0,1,2,,2024};b{0,1,2,,4048}Thereare4049×202512
Commented by BaliramKumar last updated on 31/Dec/23
set{x, y} = set{y, x}  and    x and y non zero  If a=1012   & b=2024 then y=0
set{x,y}=set{y,x}andxandynonzeroIfa=1012&b=2024theny=0
Commented by AST last updated on 31/Dec/23
What′s the answer?
Whatstheanswer?
Commented by BaliramKumar last updated on 31/Dec/23
⌊(((2024+1)(4048+1))/2)⌋ = 4099612  Any computer programmer please  check the answer
(2024+1)(4048+1)2=4099612Anycomputerprogrammerpleasechecktheanswer
Commented by MathematicalUser2357 last updated on 06/Jan/24
Right
Right
Answered by witcher3 last updated on 31/Dec/23
2023^(2024) =17^(4048) .7^(2024)   (x+y)(x−y)=2023^(2024)    { ((x+y=17^a .7^b )),((x−y=17^(4048−a) 7^(2024−b) )) :}  solve in Z  ⇒2x=17^a .7^b +17^(4048−a) 7^(2024−b)   existe solution if and only if  (a,b)≠{(0,0);(4048,2024)}  we have all set of type {(x,y);(x−y)},(x,y)∈N^2   a∈[0,4048],b∈[0,2024]  B=card{x,−y}=card{x,y}=A  A∩B={2023^(1012) ,0}  card(A∪B)=2card(A)−1  2.card{x,y}−1=(4049).(2025)−2  card{x,y}=(((4049.2025−1))/2)=4099612
20232024=174048.72024(x+y)(xy)=20232024{x+y=17a.7bxy=174048a72024bsolveinZ2x=17a.7b+174048a72024bexistesolutionifandonlyif(a,b){(0,0);(4048,2024)}wehaveallsetoftype{(x,y);(xy)},(x,y)N2a[0,4048],b[0,2024]B=card{x,y}=card{x,y}=AAB={20231012,0}card(AB)=2card(A)12.card{x,y}1=(4049).(2025)2card{x,y}=(4049.20251)2=4099612
Answered by BaliramKumar last updated on 01/Jan/24
2023^(2024)  = (7×17^2 )^(2024)  = 7^(2024) ×17^(4048)   No. of set{x, y}= ⌊∣((No. of even factors − No. of odd factors)/2)∣⌋  No. of set{x, y}= ⌊∣((0 − (2024+1)(4048+1))/2)∣⌋  No. of set{x, y}= ⌊∣((− (2025)(4049))/2)∣⌋  No. of set{x, y}= ⌊((8199225)/2)⌋   No. of set{x, y}= ⌊4099612.5⌋  No. of set{x, y}= 4099612
20232024=(7×172)2024=72024×174048No.ofset{x,y}=No.ofevenfactorsNo.ofoddfactors2No.ofset{x,y}=0(2024+1)(4048+1)2No.ofset{x,y}=(2025)(4049)2No.ofset{x,y}=81992252No.ofset{x,y}=4099612.5No.ofset{x,y}=4099612

Leave a Reply

Your email address will not be published. Required fields are marked *