Menu Close

Question-202694




Question Number 202694 by Mingma last updated on 31/Dec/23
Answered by a.lgnaoui last updated on 01/Jan/24
ΔKTP
$$\Delta\boldsymbol{\mathrm{KTP}} \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 01/Jan/24
Answered by mr W last updated on 02/Jan/24
Commented by mr W last updated on 02/Jan/24
ΔKTP=ΔKEM  ⇒∠KME=∠KPT  ⇒∠EFP=∠EKM=60°  Δ_(ETP) =((TP×EF×sin ∠EFP)/2)              =((√3)/4)×TP×EF              =((√3)/4)×((253)/( (√3)))×32=2024 ✓
$$\Delta{KTP}=\Delta{KEM} \\ $$$$\Rightarrow\angle{KME}=\angle{KPT} \\ $$$$\Rightarrow\angle{EFP}=\angle{EKM}=\mathrm{60}° \\ $$$$\Delta_{{ETP}} =\frac{{TP}×{EF}×\mathrm{sin}\:\angle{EFP}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×{TP}×{EF} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\frac{\mathrm{253}}{\:\sqrt{\mathrm{3}}}×\mathrm{32}=\mathrm{2024}\:\checkmark \\ $$
Answered by ajfour last updated on 02/Jan/24

Leave a Reply

Your email address will not be published. Required fields are marked *