Menu Close

The-sum-of-all-the-divisors-of-24-is-60-Find-the-sum-of-all-the-divisors-of-24-79-




Question Number 202672 by BaliramKumar last updated on 31/Dec/23
The sum of all the divisors of 24 is 60.  Find the sum of all the divisors of 24×79.
$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{divisors}\:\mathrm{of}\:\mathrm{24}\:\mathrm{is}\:\mathrm{60}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{divisors}\:\mathrm{of}\:\mathrm{24}×\mathrm{79}. \\ $$
Answered by a.lgnaoui last updated on 31/Dec/23
60
$$\mathrm{60} \\ $$
Commented by BaliramKumar last updated on 31/Dec/23
sum of divisors of 1896=?              [24×79 =1896]
$$\mathrm{sum}\:\mathrm{of}\:\mathrm{divisors}\:\mathrm{of}\:\mathrm{1896}=?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\mathrm{24}×\mathrm{79}\:=\mathrm{1896}\right] \\ $$
Commented by Panav last updated on 31/Dec/23
61
$$\mathrm{61} \\ $$
Answered by MM42 last updated on 31/Dec/23
d∣24  &  Σd=60  d′∣79   &   Σd′=80  ⇒Σd′′=4800  ✓   ; d′′∣24×79
$${d}\mid\mathrm{24}\:\:\&\:\:\Sigma{d}=\mathrm{60} \\ $$$${d}'\mid\mathrm{79}\:\:\:\&\:\:\:\Sigma{d}'=\mathrm{80} \\ $$$$\Rightarrow\Sigma{d}''=\mathrm{4800}\:\:\checkmark\:\:\:;\:{d}''\mid\mathrm{24}×\mathrm{79} \\ $$
Commented by BaliramKumar last updated on 31/Dec/23
yes
$$\mathrm{yes} \\ $$
Commented by MM42 last updated on 31/Dec/23
let  A={d   ;d∣m}  & B={d′  ; d′∣n}  &  C={ d′′ ;  d′′∣mn} ;(m,n)=1  ⇒C={1,d_1 ,...,d_m ,d′_1 ,...,d_n ^′ ,d_1 d_1 ^′ ,...,d_m d_n ^′ }  ⇒Σd^(′′) =Σd×Σd′
$${let}\:\:{A}=\left\{{d}\:\:\:;{d}\mid{m}\right\}\:\:\&\:{B}=\left\{{d}'\:\:;\:{d}'\mid{n}\right\}\:\:\&\:\:{C}=\left\{\:{d}''\:;\:\:{d}''\mid{mn}\right\}\:;\left({m},{n}\right)=\mathrm{1} \\ $$$$\Rightarrow{C}=\left\{\mathrm{1},{d}_{\mathrm{1}} ,…,{d}_{{m}} ,{d}'_{\mathrm{1}} ,…,{d}_{{n}} ^{'} ,{d}_{\mathrm{1}} {d}_{\mathrm{1}} ^{'} ,…,{d}_{{m}} {d}_{{n}} ^{'} \right\} \\ $$$$\Rightarrow\Sigma{d}^{''} =\Sigma{d}×\Sigma{d}'\:\: \\ $$
Commented by BaliramKumar last updated on 31/Dec/23
yes sir
$$\mathrm{yes}\:\mathrm{sir} \\ $$
Answered by BaliramKumar last updated on 31/Dec/23
σ_1 (24) = 60  σ_1 (79) = 1+79 = 80  σ_1 (24×79) = 60×80 = 4800  σ_1 (a) = m               σ_1 (b) = n  σ_1 (ab) = mn                Hcf(a, b)=1   & a ≠ b
$$\sigma_{\mathrm{1}} \left(\mathrm{24}\right)\:=\:\mathrm{60} \\ $$$$\sigma_{\mathrm{1}} \left(\mathrm{79}\right)\:=\:\mathrm{1}+\mathrm{79}\:=\:\mathrm{80} \\ $$$$\sigma_{\mathrm{1}} \left(\mathrm{24}×\mathrm{79}\right)\:=\:\mathrm{60}×\mathrm{80}\:=\:\mathrm{4800} \\ $$$$\sigma_{\mathrm{1}} \left(\mathrm{a}\right)\:=\:\mathrm{m}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sigma_{\mathrm{1}} \left(\mathrm{b}\right)\:=\:\mathrm{n} \\ $$$$\sigma_{\mathrm{1}} \left(\mathrm{ab}\right)\:=\:\mathrm{mn}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Hcf}\left(\mathrm{a},\:\mathrm{b}\right)=\mathrm{1}\:\:\:\&\:\mathrm{a}\:\neq\:\mathrm{b} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *