Menu Close

x-1-x-1-1-x-1-1-x-




Question Number 202638 by depressiveshrek last updated on 31/Dec/23
(√(x−(1/x)))−(√(1−(1/x)))=1−(1/x)
$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}−\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}=\mathrm{1}−\frac{\mathrm{1}}{{x}} \\ $$
Commented by AST last updated on 31/Dec/23
x=1.Suppose x≠1,let a=(√(x−(1/x)));b=(√(1−(1/x)))  a−b=1−(1/x);(a+b)^2 =1+x  a^2 +b^2 =x+1−(2/x)⇒2ab=(2/x)  (a+b)^2 −(a−b)^2 =4ab⇒x−(1/x^2 )+(2/x)=(4/x)  ⇒x^3 −2x−1=0⇒x=((1+(√5))/2)
$${x}=\mathrm{1}.{Suppose}\:{x}\neq\mathrm{1},{let}\:{a}=\sqrt{{x}−\frac{\mathrm{1}}{{x}}};{b}=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}} \\ $$$${a}−{b}=\mathrm{1}−\frac{\mathrm{1}}{{x}};\left({a}+{b}\right)^{\mathrm{2}} =\mathrm{1}+{x} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={x}+\mathrm{1}−\frac{\mathrm{2}}{{x}}\Rightarrow\mathrm{2}{ab}=\frac{\mathrm{2}}{{x}} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} =\mathrm{4}{ab}\Rightarrow{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\frac{\mathrm{2}}{{x}}=\frac{\mathrm{4}}{{x}} \\ $$$$\Rightarrow{x}^{\mathrm{3}} −\mathrm{2}{x}−\mathrm{1}=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by Rasheed.Sindhi last updated on 31/Dec/23
Sir mr W “can see” geometry in the question.
$$\mathcal{S}{ir}\:{mr}\:{W}\:“{can}\:{see}''\:{geometry}\:{in}\:{the}\:{question}. \\ $$
Commented by AST last updated on 31/Dec/23
Commented by AST last updated on 31/Dec/23
OR a^2 −b^2 =(a−b)(a+b)=x−1  ⇒a−b=((x−1)/( (√(1+x))))=((x−1)/x)⇒x=1 or x=(√(x+1))  ⇒x^2 −x−1=0⇒x=((1+(√5))/2)
$${OR}\:{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\left({a}−{b}\right)\left({a}+{b}\right)={x}−\mathrm{1} \\ $$$$\Rightarrow{a}−{b}=\frac{{x}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}=\frac{{x}−\mathrm{1}}{{x}}\Rightarrow{x}=\mathrm{1}\:{or}\:{x}=\sqrt{{x}+\mathrm{1}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 01/Jan/24
(√(x−(1/x)))−(√(1−(1/x)))=1−(1/x)  (√((x^2 −1)/x)) −(√((x−1)/x)) −((x−1)/x)=0  (√(((x−1)/x)(x+1))) −(√((x−1)/x)) −((√((x−1)/x)) )^2 =0  (√((x−1)/x)) ((√(x+1)) −1−(√((x−1)/x)) )=0  (√((x−1)/x)) =0 ∣ (√(x+1)) −1−(√((x−1)/x)) =0       ((x−1)/x)=0 ∣ (√(x+1)) −(√((x−1)/x)) =1       x=1✓ ∣ (x+1)+(((x−1)/x))−2(√((x^2 −1)/x)) =1  x+1+(1−(1/x))−2(√(x−(1/x))) =1  1+x−(1/x)−2(√(x−(1/x))) =0  1+((√(x−(1/x))) )^2 −2(√(x−(1/x))) =0  y^2 −2y+1=0  y=1  (√(x−(1/x))) =1  x^2 −x−1=0  x=((1±(√(1+4)) )/2)     =((1±(√5) )/2)
$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}−\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}=\mathrm{1}−\frac{\mathrm{1}}{{x}} \\ $$$$\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}}}\:−\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:−\frac{{x}−\mathrm{1}}{{x}}=\mathrm{0} \\ $$$$\sqrt{\frac{{x}−\mathrm{1}}{{x}}\left({x}+\mathrm{1}\right)}\:−\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:−\left(\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:\left(\sqrt{{x}+\mathrm{1}}\:−\mathrm{1}−\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:\right)=\mathrm{0} \\ $$$$\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:=\mathrm{0}\:\mid\:\sqrt{{x}+\mathrm{1}}\:−\mathrm{1}−\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:=\mathrm{0} \\ $$$$\:\:\:\:\:\frac{{x}−\mathrm{1}}{{x}}=\mathrm{0}\:\mid\:\sqrt{{x}+\mathrm{1}}\:−\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:=\mathrm{1} \\ $$$$\:\:\:\:\:{x}=\mathrm{1}\checkmark\:\mid\:\left({x}+\mathrm{1}\right)+\left(\frac{{x}−\mathrm{1}}{{x}}\right)−\mathrm{2}\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}}}\:=\mathrm{1} \\ $$$${x}+\mathrm{1}+\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)−\mathrm{2}\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:=\mathrm{1} \\ $$$$\mathrm{1}+{x}−\frac{\mathrm{1}}{{x}}−\mathrm{2}\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:=\mathrm{0} \\ $$$$\mathrm{1}+\left(\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:\right)^{\mathrm{2}} −\mathrm{2}\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:=\mathrm{0} \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\ $$$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}\:=\mathrm{1} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}\:}{\mathrm{2}} \\ $$$$\:\:\:=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}\:}{\mathrm{2}} \\ $$
Commented by AST last updated on 31/Dec/23
8th line: x+1+(1−(1/x))−2(√(x−(1/x)))=0
$$\mathrm{8}{th}\:{line}:\:{x}+\mathrm{1}+\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)−\mathrm{2}\sqrt{{x}−\frac{\mathrm{1}}{{x}}}=\mathrm{0} \\ $$
Commented by Rasheed.Sindhi last updated on 31/Dec/23
Thanks sir,I′ve corrected.
$$\mathcal{T}{hanks}\:{sir},{I}'{ve}\:{corrected}. \\ $$
Commented by Rasheed.Sindhi last updated on 02/Jan/24
ReCorrected. Now the answer is  right!
$${ReCorrected}.\:{Now}\:{the}\:{answer}\:{is} \\ $$$${right}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *