0-1-ln-x-ln-1-x-x-1-x-dx- Tinku Tara January 2, 2024 None 0 Comments FacebookTweetPin Question Number 202731 by MrGHK last updated on 02/Jan/24 ∫01ln(x)ln(1−x)x1−xdx Answered by witcher3 last updated on 02/Jan/24 ∫01ta−1(1−t)b−1dt=β(a,b)∂a.∂bβ(a,b)=∫01ln(t)ta−1ln(1−t)tb−1dt=f(a,b)limfx→0(x,12)=∫01ln(x)x.ln(1−x)1−xdx∂bβ(a,b)=β(a,b)(Ψ(b)−Ψ(a+b))∂a∂bβ(a,b)=β(a,b)(Ψ(a)−Ψ(a+b))(Ψ(b)−Ψ(a+b))−Ψ′(a+b)β(a,b)I=limx→0β(x,12)(Ψ(x)−Ψ(x+12))(Ψ(12)−Ψ(x+12))−Ψ′(x+12))=(Ψ(x)(Ψ(12)−Ψ(x+12))−Ψ(x+12)(Ψ(12)−Ψ(x+12)−Ψ′(x+12))β(x,12)=Ψ(x)=Ψ(1+x)−1xΨ(12)−Ψ(x+12)=Ψ(12)−Ψ(12)−xΨ′(12)−x22Ψ″(12)+o(x2)=x(−Ψ′(12)−x2Ψ″(12)+o(x))x.(Ψ(1+x)−1x−Ψ(x+12))(−Ψ′(12)−x2Ψ″(12)+o(x))=A=xΨ(1+x)−1−xΨ(x+12)=−1−x(Ψ(12)−Ψ(1))+o(x)A=Ψ′(12)+x(−Ψ″(12)2+(Ψ(12)−Ψ(1))Ψ′(12))+o(x)Ψ′(12+x)=Ψ′(12)+Ψ″(12)x+o(x)=(Ψ(x)−Ψ(x+12))(Ψ(12)−Ψ(12+x))−Ψ′(x+12)=x(−Ψ″(12)2+(Ψ(12)−Ψ(1))Ψ′(12))+o(x)β(x,12)∼Γ(x)=Γ(1+x)xI=limx→0β(x,12).x(−Ψ″(12)2+(Ψ(12)−Ψ(1))Ψ′(12))β(x,12)∼Γ(x)=Γ(1+x)x⇔limx→0(−Ψ″(12)2+(Ψ(12)−Ψ(1))Ψ′(12)xΓ(1+x)x=(−Ψ″(12)2+(Ψ(12)−Ψ(1))Ψ′(12))=∫01ln(x)ln(1−x)x1−xdxΨ(1)=−γ,Ψ(12)=−γ−log(4);Ψ′(12)=π22;Ψ″(12)=−14ζ(3)∫01ln(x)ln(1−x)x1−xdx=(7ζ(3)−π2ln(2))∼1.57 Commented by MrGHK last updated on 03/Jan/24 nicesolutionsir Commented by witcher3 last updated on 08/Jan/24 thanxhaveaniceday Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-A-x-x-2-4x-3-lt-0-x-R-B-x-2-1-x-a-0-x-2-2-a-7-x-5-0-x-R-If-A-B-Find-the-range-of-real-number-a-Next Next post: Question-202762 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.