Menu Close

0-1-ln-x-ln-1-x-x-1-x-dx-




Question Number 202731 by MrGHK last updated on 02/Jan/24
∫_0 ^1 ((ln(x)ln(1−x))/( x(√(1−x))))dx
01ln(x)ln(1x)x1xdx
Answered by witcher3 last updated on 02/Jan/24
∫_0 ^1 t^(a−1) (1−t)^(b−1) dt=β(a,b)  ∂_a .∂_b β(a,b)=∫_0 ^1 ln(t)t^(a−1) ln(1−t)t^(b−1) dt=f(a,b)  lim_(x→0) f(x,(1/2))=∫_0 ^1 ((ln(x))/x).((ln(1−x))/( (√(1−x))))dx  ∂_b β(a,b)=β(a,b)(Ψ(b)−Ψ(a+b))  ∂_a ∂_b β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b))(Ψ(b)−Ψ(a+b))  −Ψ′(a+b)β(a,b)  I=lim_(x→0) β(x,(1/2))(Ψ(x)−Ψ(x+(1/2)))(Ψ((1/2))−Ψ(x+(1/2)))−Ψ′(x+(1/2)))  =(Ψ(x)(Ψ((1/2))−Ψ(x+(1/2)))−Ψ(x+(1/2))(Ψ((1/2))−Ψ(x+(1/2))−Ψ′(x+(1/2)))β(x,(1/2))=  Ψ(x)=Ψ(1+x)−(1/x)  Ψ((1/2))−Ψ(x+(1/2))=Ψ((1/2))−Ψ((1/2))−xΨ′((1/2))−(x^2 /2)Ψ′′((1/2))+o(x^2 )  =x(−Ψ′((1/2))−(x/2)Ψ′′((1/2))+o(x))  x.(Ψ(1+x)−(1/x)−Ψ(x+(1/2)))(−Ψ′((1/2))−(x/2)Ψ′′((1/2))+o(x))=A  =xΨ(1+x)−1−xΨ(x+(1/2))=−1−x(Ψ((1/2))−Ψ(1))+o(x)  A=Ψ′((1/2))+x(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))+o(x)  Ψ′((1/2)+x)=Ψ′((1/2))+Ψ′′((1/2))x+o(x)  =(Ψ(x)−Ψ(x+(1/2)))(Ψ((1/2))−Ψ((1/2)+x))−Ψ′(x+(1/2))  =x(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))+o(x)  β(x,(1/2))∼Γ(x)=((Γ(1+x))/x)  I=lim_(x→0) β(x,(1/2)).x(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))  β(x,(1/2))∼Γ(x)=((Γ(1+x))/x)  ⇔lim_(x→0)  (((−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2))xΓ(1+x))/x)  =(−((Ψ′′((1/2)))/2)+(Ψ((1/2))−Ψ(1))Ψ′((1/2)))=∫_0 ^1 ((ln(x)ln(1−x))/(x(√(1−x))))dx  Ψ(1)=−γ,Ψ((1/2))=−γ−log(4);Ψ′((1/2))=(π^2 /2);  Ψ′′((1/2))=−14ζ(3)  ∫_0 ^1 ((ln(x)ln(1−x))/(x(√(1−x))))dx=(7ζ(3)−π^2 ln(2))∼1.57
01ta1(1t)b1dt=β(a,b)a.bβ(a,b)=01ln(t)ta1ln(1t)tb1dt=f(a,b)limfx0(x,12)=01ln(x)x.ln(1x)1xdxbβ(a,b)=β(a,b)(Ψ(b)Ψ(a+b))abβ(a,b)=β(a,b)(Ψ(a)Ψ(a+b))(Ψ(b)Ψ(a+b))Ψ(a+b)β(a,b)I=limx0β(x,12)(Ψ(x)Ψ(x+12))(Ψ(12)Ψ(x+12))Ψ(x+12))=(Ψ(x)(Ψ(12)Ψ(x+12))Ψ(x+12)(Ψ(12)Ψ(x+12)Ψ(x+12))β(x,12)=Ψ(x)=Ψ(1+x)1xΨ(12)Ψ(x+12)=Ψ(12)Ψ(12)xΨ(12)x22Ψ(12)+o(x2)=x(Ψ(12)x2Ψ(12)+o(x))x.(Ψ(1+x)1xΨ(x+12))(Ψ(12)x2Ψ(12)+o(x))=A=xΨ(1+x)1xΨ(x+12)=1x(Ψ(12)Ψ(1))+o(x)A=Ψ(12)+x(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))+o(x)Ψ(12+x)=Ψ(12)+Ψ(12)x+o(x)=(Ψ(x)Ψ(x+12))(Ψ(12)Ψ(12+x))Ψ(x+12)=x(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))+o(x)β(x,12)Γ(x)=Γ(1+x)xI=limx0β(x,12).x(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))β(x,12)Γ(x)=Γ(1+x)xlimx0(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12)xΓ(1+x)x=(Ψ(12)2+(Ψ(12)Ψ(1))Ψ(12))=01ln(x)ln(1x)x1xdxΨ(1)=γ,Ψ(12)=γlog(4);Ψ(12)=π22;Ψ(12)=14ζ(3)01ln(x)ln(1x)x1xdx=(7ζ(3)π2ln(2))1.57
Commented by MrGHK last updated on 03/Jan/24
nice solution sir
nicesolutionsir
Commented by witcher3 last updated on 08/Jan/24
thanx have a nice day
thanxhaveaniceday

Leave a Reply

Your email address will not be published. Required fields are marked *