Question Number 202774 by BaliramKumar last updated on 03/Jan/24
$$\mathrm{1}.\:\:\:\:\:\:\mathrm{S}_{\mathrm{n}} \:=\:\mathrm{a}\left(\mathrm{a}+\mathrm{d}\right)+\left(\mathrm{a}+\mathrm{d}\right)\left(\mathrm{a}+\mathrm{2d}\right)+……+\left\{\mathrm{a}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{d}\right\}\left\{\mathrm{a}+\left(\mathrm{n}\right)\mathrm{d}\right\} \\ $$$$\mathrm{2}.\:\:\:\:\:\:\mathrm{S}_{\mathrm{n}} \:=\:\mathrm{a}\left(\mathrm{a}+\mathrm{d}\right)\left(\mathrm{a}+\mathrm{2d}\right)+\left(\mathrm{a}+\mathrm{d}\right)\left(\mathrm{a}+\mathrm{2d}\right)\left(\mathrm{a}+\mathrm{3d}\right)+……+\left\{\mathrm{a}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{d}\right\}\left\{\mathrm{a}+\left(\mathrm{n}\right)\mathrm{d}\right\}\left\{\mathrm{a}+\left(\mathrm{n}+\mathrm{1}\right)\mathrm{d}\right\} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 03/Jan/24
$$\left.\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\sum}}\left\{{a}+{kd}\right)\right\}\left\{\left({a}+\left({k}+\mathrm{1}\right){d}\right\}\right. \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\sum}}\left\{{a}^{\mathrm{2}} +\left(\mathrm{2}{k}+\mathrm{1}\right){ad}+{k}\left({k}+\mathrm{1}\right){d}^{\mathrm{2}} \right\} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}^{\mathrm{2}} +\underset{{k}=\mathrm{1}} {\Sigma}\left(\mathrm{2}{k}+\mathrm{1}\right){ad}+\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}{k}\left({k}+\mathrm{1}\right){d}^{\mathrm{2}} \\ $$$${na}^{\mathrm{2}} +\underset{{k}=\mathrm{1}} {\Sigma}\left(\mathrm{2}{k}+\mathrm{1}\right){ad}+\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}{k}\left({k}+\mathrm{1}\right){d}^{\mathrm{2}} \\ $$$$\left.{na}^{\mathrm{2}} +{ad}\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}\left(\mathrm{2}{k}+\mathrm{1}\right)+{d}^{\mathrm{2}} \underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}{k}^{\mathrm{2}} +{k}\right) \\ $$$${na}^{\mathrm{2}} +{ad}\left\{\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}{k}+\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}\mathrm{1}\right\}+{d}^{\mathrm{2}} \left\{\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}{k}^{\mathrm{2}} +\underset{{k}=\mathrm{1}} {\overset{{k}={n}} {\Sigma}}{k}\right) \\ $$$${na}^{\mathrm{2}} +{ad}\left\{{n}+\mathrm{2}\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right)\right\}+{d}^{\mathrm{2}} \left\{\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}+\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\} \\ $$$${na}^{\mathrm{2}} +{ad}\left\{{n}^{\mathrm{2}} +\mathrm{2}{n}\right\}+{d}^{\mathrm{2}} \left\{\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)+\mathrm{3}{n}\left({n}+\mathrm{1}\right)}{\mathrm{6}}\right\} \\ $$$${na}^{\mathrm{2}} +{n}\left({n}+\mathrm{2}\right){ad}+\left(\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}+\mathrm{3}\right)}{\mathrm{6}}\right){d}^{\mathrm{2}} \\ $$$${na}^{\mathrm{2}} +{n}\left({n}+\mathrm{2}\right){ad}+\left(\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{3}}\right){d}^{\mathrm{2}} \\ $$
Commented by BaliramKumar last updated on 03/Jan/24
$$\mathrm{Thanks}\:\mathrm{Sir} \\ $$