Menu Close

1-S-n-a-a-d-a-d-a-2d-a-n-1-d-a-n-d-2-S-n-a-a-d-a-2d-a-d-a-2d-a-3d-a-n-1-d-a-n-d-a-n-1-d-




Question Number 202774 by BaliramKumar last updated on 03/Jan/24
1.      S_n  = a(a+d)+(a+d)(a+2d)+......+{a+(n−1)d}{a+(n)d}  2.      S_n  = a(a+d)(a+2d)+(a+d)(a+2d)(a+3d)+......+{a+(n−1)d}{a+(n)d}{a+(n+1)d}
1.Sn=a(a+d)+(a+d)(a+2d)++{a+(n1)d}{a+(n)d}2.Sn=a(a+d)(a+2d)+(a+d)(a+2d)(a+3d)++{a+(n1)d}{a+(n)d}{a+(n+1)d}
Answered by Rasheed.Sindhi last updated on 03/Jan/24
Σ_(k=1) ^(k=n) {a+kd)}{(a+(k+1)d}  Σ_(k=1) ^(k=n) {a^2 +(2k+1)ad+k(k+1)d^2 }  Σ_(k=1) ^n a^2 +Σ_(k=1) (2k+1)ad+Σ_(k=1) ^(k=n) k(k+1)d^2   na^2 +Σ_(k=1) (2k+1)ad+Σ_(k=1) ^(k=n) k(k+1)d^2   na^2 +adΣ_(k=1) ^(k=n) (2k+1)+d^2 Σ_(k=1) ^(k=n) k^2 +k)  na^2 +ad{2Σ_(k=1) ^(k=n) k+Σ_(k=1) ^(k=n) 1}+d^2 {Σ_(k=1) ^(k=n) k^2 +Σ_(k=1) ^(k=n) k)  na^2 +ad{n+2(((n(n+1))/2))}+d^2 {((n(n+1)(2n+1))/6)+((n(n+1))/2)}  na^2 +ad{n^2 +2n}+d^2 {((n(n+1)(2n+1)+3n(n+1))/6)}  na^2 +n(n+2)ad+(((n(n+1)(2n+1+3))/6))d^2   na^2 +n(n+2)ad+(((n(n+1)(n+2))/3))d^2
k=nk=1{a+kd)}{(a+(k+1)d}k=nk=1{a2+(2k+1)ad+k(k+1)d2}nk=1a2+Σk=1(2k+1)ad+Σk=nk=1k(k+1)d2na2+Σk=1(2k+1)ad+Σk=nk=1k(k+1)d2na2+adΣk=nk=1(2k+1)+d2Σk=nk=1k2+k)na2+ad{2Σk=nk=1k+Σk=nk=11}+d2{Σk=nk=1k2+Σk=nk=1k)na2+ad{n+2(n(n+1)2)}+d2{n(n+1)(2n+1)6+n(n+1)2}na2+ad{n2+2n}+d2{n(n+1)(2n+1)+3n(n+1)6}na2+n(n+2)ad+(n(n+1)(2n+1+3)6)d2na2+n(n+2)ad+(n(n+1)(n+2)3)d2
Commented by BaliramKumar last updated on 03/Jan/24
Thanks Sir
ThanksSir

Leave a Reply

Your email address will not be published. Required fields are marked *