Menu Close

if-f-1-f-0-f-2-0-and-f-1-6-then-find-f-x-




Question Number 202795 by mathlove last updated on 03/Jan/24
if f(−1)=f(0)=f(2)=0 and f(1)=6  then find f(x)=?
iff(1)=f(0)=f(2)=0andf(1)=6thenfindf(x)=?
Answered by AST last updated on 03/Jan/24
If f(x) is a polynomial: x(x+1)(x−2)(x−4)
Iff(x)isapolynomial:x(x+1)(x2)(x4)
Answered by mr W last updated on 03/Jan/24
f(−1)=f(0)=f(2)=0:  ⇒f(x)=x(x+1)(x−2)p(x)  f(1)=6:  ⇒f(1)=1×(1+1)(1−2)p(1)=6  ⇒p(1)=−3  ⇒p(x)=(x−4)q(x) with q(1)=1  solution:  f(x)=x(x+1)(x−2)(x−4)q(x)  with q(x)=any function and q(1)=1.
f(1)=f(0)=f(2)=0:f(x)=x(x+1)(x2)p(x)f(1)=6:f(1)=1×(1+1)(12)p(1)=6p(1)=3p(x)=(x4)q(x)withq(1)=1solution:f(x)=x(x+1)(x2)(x4)q(x)withq(x)=anyfunctionandq(1)=1.
Commented by mathlove last updated on 03/Jan/24
thanks mr W
thanksmrW
Commented by Rasheed.Sindhi last updated on 03/Jan/24
f(x)=x(x+1)(x−2)(x−4)^(?) q(x)  Thanx in advance sir!
f(x)=x(x+1)(x2)(x4)?q(x)Thanxinadvancesir!
Commented by mr W last updated on 03/Jan/24
such that f(1)=6
suchthatf(1)=6
Commented by Rasheed.Sindhi last updated on 03/Jan/24
ThanX again sir!
ThanXagainsir!
Answered by a.lgnaoui last updated on 03/Jan/24
 −1;0 et 2 racines de f(x)  ⇒f(x)=ax(x+1)(x−2)    f(1)=a×2×(−1)=−2a=6  ⇒ a=−(6/2)=−3  alors    f(x)=−3x(x+1)(x−2)       f(x)=−3x(x^2 −x−2)
1;0et2racinesdef(x)f(x)=ax(x+1)(x2)f(1)=a×2×(1)=2a=6a=62=3alorsf(x)=3x(x+1)(x2)f(x)=3x(x2x2)
Answered by Frix last updated on 04/Jan/24
Usually we′re looking for the polynome  of minimal degree. With n equations we  get a polynome of degree n−1 ⇒ with 4  equations we get a polynome of degree 3.  The usual method is this:    ax^3 +bx^2 +cx+d=f(x)  f(0)=0 ⇒ d=0 (1)  f(−1)=0  −a+b−c=0 (2)  f(2)=0  8a+4b+2c=0 (3)  f(1)=6  a+b+c=6 (4)  (2) ⇒ b=a+c  (3) 12a+6c=0 ⇒ c=−2a ⇒ b=−a  (4) −2a=6 ⇒ a=−3 ⇒ b=3∧c=6  ⇒  f(x)=−3x^3 +3x^2 +6x=−3x(x−2)(x+1)    But with f(−1)=f(0)=f(2)=0 we directly  get  f(x)=a(x+1)x(x−2)  f(1)=6 ⇒ a×2×1×(−1)=6 ⇒ a=−3  ⇒  f(x)=−3x(x−2)(x+1)
Usuallywerelookingforthepolynomeofminimaldegree.Withnequationswegetapolynomeofdegreen1with4equationswegetapolynomeofdegree3.Theusualmethodisthis:ax3+bx2+cx+d=f(x)f(0)=0d=0(1)f(1)=0a+bc=0(2)f(2)=08a+4b+2c=0(3)f(1)=6a+b+c=6(4)(2)b=a+c(3)12a+6c=0c=2ab=a(4)2a=6a=3b=3c=6f(x)=3x3+3x2+6x=3x(x2)(x+1)Butwithf(1)=f(0)=f(2)=0wedirectlygetf(x)=a(x+1)x(x2)f(1)=6a×2×1×(1)=6a=3f(x)=3x(x2)(x+1)
Commented by mathlove last updated on 04/Jan/24
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *