Menu Close

calculate-0-1-tanh-1-x-1-x-2-dx-




Question Number 202866 by mnjuly1970 last updated on 04/Jan/24
         calculate ...         𝛗= ∫_0 ^( 1) (( tanh^( −1) (x))/((1 + x )^( 2) )) dx = ?
calculateϕ=01tanh1(x)(1+x)2dx=?
Answered by Mathspace last updated on 06/Jan/24
x=th(t)=((sht)/(cht))=((e^t −e^(−t) )/(e^t +e^(−t) ))  (dx/dt)=((ch^2 t−sh^2 t)/(ch^2 t))=(1/(ch^2 t))  Φ=∫_0 ^(argth1)  (t/((1+((e^t −e^(−t) )/(e^t +e^(−t) )))^2 ))(dt/((((e^t +e^(−t) )/2))^2 ))  =4∫_0 ^(argth(1))    (t/(4e^(2t) ))dt  =∫_0 ^(argth(1)) t e^(−2t)  dt  =[−(1/2)t e^(−2t) ]_0 ^(argth(1)) +(1/2)∫_0 ^(argth1)  e^(−2t) dt  we have x=((e^t −e^(−t) )/(e^t +e^(−t) ))  =((e^(2t) −1)/(e^(2t) +1)) ⇒xe^(2t) +x=e^(2t) −1 ⇒  (x−1)e^(2t) =−x−1 ⇒  e^(2t) =((1+x)/(1−x)) ⇒t=(1/2)ln(((1+x)/(1−x)))  x→1^−  ⇒t→+∞ ⇒  Φ=[−(1/2)te^(−2t) ]_0 ^∞ −(1/4)[e^(−2t) ]_0 ^∞   =(1/4)
x=th(t)=shtcht=etetet+etdxdt=ch2tsh2tch2t=1ch2tΦ=0argth1t(1+etetet+et)2dt(et+et2)2=40argth(1)t4e2tdt=0argth(1)te2tdt=[12te2t]0argth(1)+120argth1e2tdtwehavex=etetet+et=e2t1e2t+1xe2t+x=e2t1(x1)e2t=x1e2t=1+x1xt=12ln(1+x1x)x1t+Φ=[12te2t]014[e2t]0=14

Leave a Reply

Your email address will not be published. Required fields are marked *