calculate-0-1-tanh-1-x-1-x-2-dx- Tinku Tara January 4, 2024 Differentiation 0 Comments FacebookTweetPin Question Number 202866 by mnjuly1970 last updated on 04/Jan/24 calculate…ϕ=∫01tanh−1(x)(1+x)2dx=? Answered by Mathspace last updated on 06/Jan/24 x=th(t)=shtcht=et−e−tet+e−tdxdt=ch2t−sh2tch2t=1ch2tΦ=∫0argth1t(1+et−e−tet+e−t)2dt(et+e−t2)2=4∫0argth(1)t4e2tdt=∫0argth(1)te−2tdt=[−12te−2t]0argth(1)+12∫0argth1e−2tdtwehavex=et−e−tet+e−t=e2t−1e2t+1⇒xe2t+x=e2t−1⇒(x−1)e2t=−x−1⇒e2t=1+x1−x⇒t=12ln(1+x1−x)x→1−⇒t→+∞⇒Φ=[−12te−2t]0∞−14[e−2t]0∞=14 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-2x-2-cos-y-2-dydx-Next Next post: Question-202864 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.