Question Number 202930 by Calculusboy last updated on 06/Jan/24
Answered by MathematicalUser2357 last updated on 06/Jan/24
$$\mathrm{No}\:\mathrm{antiderivative}\:\mathrm{could}\:\mathrm{be}\:\mathrm{found}\:\mathrm{within}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{time}\:\mathrm{limit},\:\mathrm{or}\:\mathrm{all}\:\mathrm{supported}\:\mathrm{integration}\:\mathrm{methods} \\ $$$$\mathrm{were}\:\mathrm{tried}\:\mathrm{unsuccessfully}.\:\mathrm{Note}\:\mathrm{that}\:\mathrm{many}\:\mathrm{functions} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{an}\:\mathrm{elementary}\:\mathrm{antiderivative}. \\ $$
Commented by mr W last updated on 06/Jan/24
$${what}\:{does}\:{this}\:{mean}?\:{you}\:{seem}\:{to}\:{be} \\ $$$${quoting}\:{the}\:{output}\:{of}\:{a}\:{computer}\: \\ $$$${program}. \\ $$