Menu Close

e-2-Proof-Let-x-e-2-2-2x-e-2-2x-e-2-e-2-e-2-2ex-4x-e-2-4-4x-4-2ex-e-2-x-2-4x-4-x-2-2ex-e-2-x-2-2-x-e-2-x-2-2-x-e-2-x-2-x-e-2-e-e-2-




Question Number 203035 by Frix last updated on 07/Jan/24
e=2  Proof:  Let x=((e+2)/2)  2x=e+2  2x(e−2)=(e+2)(e−2)  2ex−4x=e^2 −4  −4x+4=−2ex+e^2   x^2 −4x+4=x^2 −2ex+e^2   (x−2)^2 =(x−e)^2   (√((x−2)^2 ))=(√((x−e)^2 ))  x−2=x−e  −2=−e  e=2
$$\mathrm{e}=\mathrm{2} \\ $$$$\mathrm{Proof}: \\ $$$$\mathrm{Let}\:{x}=\frac{\mathrm{e}+\mathrm{2}}{\mathrm{2}} \\ $$$$\mathrm{2}{x}=\mathrm{e}+\mathrm{2} \\ $$$$\mathrm{2}{x}\left(\mathrm{e}−\mathrm{2}\right)=\left(\mathrm{e}+\mathrm{2}\right)\left(\mathrm{e}−\mathrm{2}\right) \\ $$$$\mathrm{2e}{x}−\mathrm{4}{x}=\mathrm{e}^{\mathrm{2}} −\mathrm{4} \\ $$$$−\mathrm{4}{x}+\mathrm{4}=−\mathrm{2e}{x}+\mathrm{e}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}={x}^{\mathrm{2}} −\mathrm{2e}{x}+\mathrm{e}^{\mathrm{2}} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} =\left({x}−\mathrm{e}\right)^{\mathrm{2}} \\ $$$$\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }=\sqrt{\left({x}−\mathrm{e}\right)^{\mathrm{2}} } \\ $$$${x}−\mathrm{2}={x}−\mathrm{e} \\ $$$$−\mathrm{2}=−\mathrm{e} \\ $$$$\mathrm{e}=\mathrm{2} \\ $$
Commented by Calculusboy last updated on 07/Jan/24
nice sir
$$\boldsymbol{{nice}}\:\boldsymbol{{sir}} \\ $$
Commented by AST last updated on 07/Jan/24
2x=e+2⇔2x(e−2)=(e+2)(e−2) is only valid  when e≠2  (√((x−2)^2 ))=(√((x−e)^2 ))⇒x−2=x−e is only valid  when  x≥2 ∧ x≥e  e here also has nothing to do with Euler′s   number(≈2.718281). So, it is acting like a  random variable. It could also be a,b,s,t,x...
$$\mathrm{2}{x}={e}+\mathrm{2}\Leftrightarrow\mathrm{2}{x}\left({e}−\mathrm{2}\right)=\left({e}+\mathrm{2}\right)\left({e}−\mathrm{2}\right)\:{is}\:{only}\:{valid} \\ $$$${when}\:{e}\neq\mathrm{2} \\ $$$$\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }=\sqrt{\left({x}−{e}\right)^{\mathrm{2}} }\Rightarrow{x}−\mathrm{2}={x}−{e}\:{is}\:{only}\:{valid} \\ $$$${when}\:\:{x}\geqslant\mathrm{2}\:\wedge\:{x}\geqslant{e} \\ $$$$\mathrm{e}\:{here}\:{also}\:{has}\:{nothing}\:{to}\:{do}\:{with}\:{Euler}'{s}\: \\ $$$${number}\left(\approx\mathrm{2}.\mathrm{718281}\right).\:{So},\:{it}\:{is}\:{acting}\:{like}\:{a} \\ $$$${random}\:{variable}.\:{It}\:{could}\:{also}\:{be}\:{a},{b},{s},{t},{x}… \\ $$
Commented by Frix last updated on 08/Jan/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *