Menu Close

e-2-Proof-Let-x-e-2-2-2x-e-2-2x-e-2-e-2-e-2-2ex-4x-e-2-4-4x-4-2ex-e-2-x-2-4x-4-x-2-2ex-e-2-x-2-2-x-e-2-x-2-2-x-e-2-x-2-x-e-2-e-e-2-




Question Number 203035 by Frix last updated on 07/Jan/24
e=2  Proof:  Let x=((e+2)/2)  2x=e+2  2x(e−2)=(e+2)(e−2)  2ex−4x=e^2 −4  −4x+4=−2ex+e^2   x^2 −4x+4=x^2 −2ex+e^2   (x−2)^2 =(x−e)^2   (√((x−2)^2 ))=(√((x−e)^2 ))  x−2=x−e  −2=−e  e=2
e=2Proof:Letx=e+222x=e+22x(e2)=(e+2)(e2)2ex4x=e244x+4=2ex+e2x24x+4=x22ex+e2(x2)2=(xe)2(x2)2=(xe)2x2=xe2=ee=2
Commented by Calculusboy last updated on 07/Jan/24
nice sir
\boldsymbolnice\boldsymbolsir
Commented by AST last updated on 07/Jan/24
2x=e+2⇔2x(e−2)=(e+2)(e−2) is only valid  when e≠2  (√((x−2)^2 ))=(√((x−e)^2 ))⇒x−2=x−e is only valid  when  x≥2 ∧ x≥e  e here also has nothing to do with Euler′s   number(≈2.718281). So, it is acting like a  random variable. It could also be a,b,s,t,x...
2x=e+22x(e2)=(e+2)(e2)isonlyvalidwhene2(x2)2=(xe)2x2=xeisonlyvalidwhenx2xeeherealsohasnothingtodowithEulersnumber(2.718281).So,itisactinglikearandomvariable.Itcouldalsobea,b,s,t,x
Commented by Frix last updated on 08/Jan/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *