Menu Close

Solve-for-x-R-x-4-4x-3-0-




Question Number 203002 by mr W last updated on 07/Jan/24
Solve for x∈R  x^4 +4x−3=0
$${Solve}\:{for}\:{x}\in{R} \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{x}−\mathrm{3}=\mathrm{0} \\ $$
Answered by ajfour last updated on 07/Jan/24
p^2 (p^4 +12)=16  ⇒  (p^2 /2)^3 +3(p^2 /2)^2 =2  (p^2 /2)=(((√2)+1))^(1/3) −(((√2)−1))^(1/3)   now x is easy.
$${p}^{\mathrm{2}} \left({p}^{\mathrm{4}} +\mathrm{12}\right)=\mathrm{16} \\ $$$$\Rightarrow\:\:\left({p}^{\mathrm{2}} /\mathrm{2}\right)^{\mathrm{3}} +\mathrm{3}\left({p}^{\mathrm{2}} /\mathrm{2}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\frac{{p}^{\mathrm{2}} }{\mathrm{2}}=\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{2}}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{2}}−\mathrm{1}} \\ $$$${now}\:{x}\:{is}\:{easy}. \\ $$
Commented by ajfour last updated on 07/Jan/24
Answered by mr W last updated on 07/Jan/24
solve x^4 +4x−3=0    let′s generally look at the equation  x^4 +px+q=0.  say f(x)=x^4 +px+q  lim_(x→−∞) f(x)=+∞  lim_(x→+∞) f(x)=+∞  f′(x)=4x^3 +p=0 ⇒x=−((p/4))^(1/3)   that means f(x) has minimum at  x_m =−((p/4))^(1/3) .  f(x)_(min) =[−((p/4))^(1/3) ]^4 +p[−((p/4))^(1/3) ]+q=−3((p/4))^(4/3) +q  there are three cases, see diagram  below.    case 1:   f(x)_(min) =−3((p/4))^(4/3) +q>0  i.e. ((p/4))^4 −((q/3))^3 <0  ⇒f(x)=0 has no real root.    case 2:  f(x)_(min) =−3((p/4))^(4/3) +q=0  i.e. ((p/4))^4 −((q/3))^3 =0  ⇒f(x)=0 has a double real root  x_(1,2) =x_m = −((p/4))^(1/3)     case 3:  f(x)_(min) =−3((p/4))^(4/3) +q=p<0  i.e. ((p/4))^4 −((q/3))^3 >0  ⇒f(x)=0 has two real roots.
$${solve}\:{x}^{\mathrm{4}} +\mathrm{4}{x}−\mathrm{3}=\mathrm{0} \\ $$$$ \\ $$$${let}'{s}\:{generally}\:{look}\:{at}\:{the}\:{equation} \\ $$$${x}^{\mathrm{4}} +{px}+{q}=\mathrm{0}. \\ $$$${say}\:{f}\left({x}\right)={x}^{\mathrm{4}} +{px}+{q} \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$$${f}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +{p}=\mathrm{0}\:\Rightarrow{x}=−\sqrt[{\mathrm{3}}]{\frac{{p}}{\mathrm{4}}} \\ $$$${that}\:{means}\:{f}\left({x}\right)\:{has}\:{minimum}\:{at} \\ $$$${x}_{{m}} =−\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} . \\ $$$${f}\left({x}\right)_{{min}} =\left[−\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right]^{\mathrm{4}} +{p}\left[−\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right]+{q}=−\mathrm{3}\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} +{q} \\ $$$${there}\:{are}\:{three}\:{cases},\:{see}\:{diagram} \\ $$$${below}. \\ $$$$ \\ $$$${case}\:\mathrm{1}:\: \\ $$$${f}\left({x}\right)_{{min}} =−\mathrm{3}\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} +{q}>\mathrm{0} \\ $$$${i}.{e}.\:\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} <\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{0}\:{has}\:{no}\:{real}\:{root}. \\ $$$$ \\ $$$${case}\:\mathrm{2}: \\ $$$${f}\left({x}\right)_{{min}} =−\mathrm{3}\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} +{q}=\mathrm{0} \\ $$$${i}.{e}.\:\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{0}\:{has}\:{a}\:{double}\:{real}\:{root} \\ $$$${x}_{\mathrm{1},\mathrm{2}} ={x}_{{m}} =\:−\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$ \\ $$$${case}\:\mathrm{3}: \\ $$$${f}\left({x}\right)_{{min}} =−\mathrm{3}\left(\frac{{p}}{\mathrm{4}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} +{q}={p}<\mathrm{0} \\ $$$${i}.{e}.\:\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} >\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{0}\:{has}\:{two}\:{real}\:{roots}. \\ $$
Commented by mr W last updated on 07/Jan/24
Commented by mr W last updated on 07/Jan/24
x^4 +px+q=0  (x^2 +ax+b)(x^2 +cx+d)=x^4 +px+q  x^4 +(a+c)x^3 +(b+d+ac)x^2 +(bc+ad)x+bd=x^4 +px+q  a+c=0 ⇒c=−a  b+d+ac=0 ⇒d=a^2 −b=(a^2 /2)+(p/(2a))  bc+ad=p ⇒a^3 −2ba=p ⇒b=((a^3 −p)/(2a))=(a^2 /2)−(p/(2a))  bd=q ⇒b(a^2 −b)=q   ⇒(((a^3 −p)/(2a)))(a^2 −((a^3 −p)/(2a)))=q  ⇒a^6 −4qa^2 −p^2 =0  Δ=(−((4q)/3))^3 +(−(p^2 /2))^2 =64[((p/4))^4 −((q/3))^3 ]  if ((p/4))^4 −((q/3))^3 ≥0, Δ≥0  ⇒a^2 =((8(√(((p/4))^4 −((q/3))^3 ))+(p^2 /2)))^(1/3) −((8(√(((p/4))^4 −((q/3))^3 ))−(p^2 /2)))^(1/3)   ⇒a=±(√(((8(√(((p/4))^4 −((q/3))^3 ))+(p^2 /2)))^(1/3) −((8(√(((p/4))^4 −((q/3))^3 ))−(p^2 /2)))^(1/3) ))  for real roots we take the same sign  for a as the sign of p.    example with p=4, q=−3  a=(√(2((((√2)+1))^(1/3) −(((√2)−1))^(1/3) )))  x_(1,2) =((−a±(√(a^2 −4b)))/2)         =(1/2)(−a±(√(((2p)/a)−a^2 )))         ≈−1.7844 ∨ 0.6925
$${x}^{\mathrm{4}} +{px}+{q}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{2}} +{cx}+{d}\right)={x}^{\mathrm{4}} +{px}+{q} \\ $$$${x}^{\mathrm{4}} +\left({a}+{c}\right){x}^{\mathrm{3}} +\left({b}+{d}+{ac}\right){x}^{\mathrm{2}} +\left({bc}+{ad}\right){x}+{bd}={x}^{\mathrm{4}} +{px}+{q} \\ $$$${a}+{c}=\mathrm{0}\:\Rightarrow{c}=−{a} \\ $$$${b}+{d}+{ac}=\mathrm{0}\:\Rightarrow{d}={a}^{\mathrm{2}} −{b}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{{p}}{\mathrm{2}{a}} \\ $$$${bc}+{ad}={p}\:\Rightarrow{a}^{\mathrm{3}} −\mathrm{2}{ba}={p}\:\Rightarrow{b}=\frac{{a}^{\mathrm{3}} −{p}}{\mathrm{2}{a}}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}−\frac{{p}}{\mathrm{2}{a}} \\ $$$${bd}={q}\:\Rightarrow{b}\left({a}^{\mathrm{2}} −{b}\right)={q}\: \\ $$$$\Rightarrow\left(\frac{{a}^{\mathrm{3}} −{p}}{\mathrm{2}{a}}\right)\left({a}^{\mathrm{2}} −\frac{{a}^{\mathrm{3}} −{p}}{\mathrm{2}{a}}\right)={q} \\ $$$$\Rightarrow{a}^{\mathrm{6}} −\mathrm{4}{qa}^{\mathrm{2}} −{p}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\left(−\frac{\mathrm{4}{q}}{\mathrm{3}}\right)^{\mathrm{3}} +\left(−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{64}\left[\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} \right] \\ $$$${if}\:\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} \geqslant\mathrm{0},\:\Delta\geqslant\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\sqrt[{\mathrm{3}}]{\mathrm{8}\sqrt{\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} }+\frac{{p}^{\mathrm{2}} }{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\mathrm{8}\sqrt{\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} }−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\Rightarrow{a}=\pm\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{8}\sqrt{\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} }+\frac{{p}^{\mathrm{2}} }{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\mathrm{8}\sqrt{\left(\frac{{p}}{\mathrm{4}}\right)^{\mathrm{4}} −\left(\frac{{q}}{\mathrm{3}}\right)^{\mathrm{3}} }−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}}} \\ $$$${for}\:{real}\:{roots}\:{we}\:{take}\:{the}\:{same}\:{sign} \\ $$$${for}\:{a}\:{as}\:{the}\:{sign}\:{of}\:{p}. \\ $$$$ \\ $$$${example}\:{with}\:{p}=\mathrm{4},\:{q}=−\mathrm{3} \\ $$$${a}=\sqrt{\mathrm{2}\left(\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{2}}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{2}}−\mathrm{1}}\right)} \\ $$$${x}_{\mathrm{1},\mathrm{2}} =\frac{−{a}\pm\sqrt{{a}^{\mathrm{2}} −\mathrm{4}{b}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(−{a}\pm\sqrt{\frac{\mathrm{2}{p}}{{a}}−{a}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:\:\:\:\approx−\mathrm{1}.\mathrm{7844}\:\vee\:\mathrm{0}.\mathrm{6925} \\ $$
Commented by ajfour last updated on 07/Jan/24
yes this is the simpler in fact. Thank you sir. but b=0 in my formula for x would be equivalently simple too.
Commented by mr W last updated on 07/Jan/24
you are right sir! thanks!
$${you}\:{are}\:{right}\:{sir}!\:{thanks}! \\ $$
Answered by Frix last updated on 07/Jan/24
Just the same but another point of view.  x^4 +px+q=0  p=−4α(α^2 +β)  q=(α^2 −β)(3α^2 +β)  x^4 −4α(α^2 +β)x+(α^2 −β)(3α^2 +β)=0  (x^2 −2αx+α^2 −β)(x^2 +2αx+3α^2 −β)=0  x_(1, 2) =α±(√β)  x_(2, 3) =−α±(√(−(2α^2 +β)))  We end up with  α^6 −((qα^2 )/4)−(p^2 /(64))=0∧β=−α^2 −(p/(4α))
$$\mathrm{Just}\:\mathrm{the}\:\mathrm{same}\:\mathrm{but}\:\mathrm{another}\:\mathrm{point}\:\mathrm{of}\:\mathrm{view}. \\ $$$${x}^{\mathrm{4}} +{px}+{q}=\mathrm{0} \\ $$$${p}=−\mathrm{4}\alpha\left(\alpha^{\mathrm{2}} +\beta\right) \\ $$$${q}=\left(\alpha^{\mathrm{2}} −\beta\right)\left(\mathrm{3}\alpha^{\mathrm{2}} +\beta\right) \\ $$$${x}^{\mathrm{4}} −\mathrm{4}\alpha\left(\alpha^{\mathrm{2}} +\beta\right){x}+\left(\alpha^{\mathrm{2}} −\beta\right)\left(\mathrm{3}\alpha^{\mathrm{2}} +\beta\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}\alpha{x}+\alpha^{\mathrm{2}} −\beta\right)\left({x}^{\mathrm{2}} +\mathrm{2}\alpha{x}+\mathrm{3}\alpha^{\mathrm{2}} −\beta\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1},\:\mathrm{2}} =\alpha\pm\sqrt{\beta} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} =−\alpha\pm\sqrt{−\left(\mathrm{2}\alpha^{\mathrm{2}} +\beta\right)} \\ $$$$\mathrm{We}\:\mathrm{end}\:\mathrm{up}\:\mathrm{with} \\ $$$$\alpha^{\mathrm{6}} −\frac{{q}\alpha^{\mathrm{2}} }{\mathrm{4}}−\frac{{p}^{\mathrm{2}} }{\mathrm{64}}=\mathrm{0}\wedge\beta=−\alpha^{\mathrm{2}} −\frac{{p}}{\mathrm{4}\alpha} \\ $$
Commented by mr W last updated on 07/Jan/24
thanks sir!
$${thanks}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *