Question Number 203051 by ajfour last updated on 08/Jan/24
$${A}\:{two}\:{digit}\:{number}\:\:\left({AB}\right)_{\mathrm{10}} \\ $$$$\left({AB}\right)_{\mathrm{10}} −{A}^{{B}} =\left({BA}\right)_{\mathrm{10}} \\ $$$${Find}\:{the}\:{number}.\:{There}\:{is}\:{a}\:{poem}. \\ $$$${Having}\:{arrived}\:{at}\:{the}\:{age}\:{of}\:\left({BA}\right)_{\mathrm{10}} . \\ $$
Answered by Rasheed.Sindhi last updated on 08/Jan/24
$$\left({AB}\right)_{\mathrm{10}} −{A}^{{B}} =\left({BA}\right)_{\mathrm{10}} \Rightarrow\left({AB}\right)_{\mathrm{10}} −{A}^{{B}} \geqslant\mathrm{0} \\ $$$$\mathrm{10}{A}+{B}−\mathrm{10}{B}−{A}={A}^{{B}} \\ $$$$\mathrm{9}{A}−\mathrm{9}{B}={A}^{{B}} \\ $$$$\mathrm{9}\left({A}−{B}\right)={A}^{{B}} \\ $$$$\Rightarrow\mathrm{9}\mid{A}^{{B}} \\ $$$${A}=\mathrm{9}\:{or}\:\:{A}=\mathrm{3},\mathrm{6}\:\wedge\:{B}\geqslant\mathrm{2}\:\:\&\:{A}\geqslant{B} \\ $$$$\mathrm{91}−\mathrm{9}^{\mathrm{1}} =\mathrm{82}\:× \\ $$$$\mathrm{92}−\mathrm{9}^{\mathrm{2}} =\mathrm{11}× \\ $$$$\mathrm{93}−\mathrm{9}^{\mathrm{3}} <\mathrm{0}\:× \\ $$$$\mathrm{32}−\mathrm{3}^{\mathrm{2}} =\mathrm{23}\:\checkmark \\ $$$$\mathrm{62}−\mathrm{6}^{\mathrm{2}} =\mathrm{26}\checkmark \\ $$$$\mathrm{62}−\mathrm{6}^{\mathrm{3}} <\mathrm{0}\:× \\ $$
Commented by ajfour last updated on 08/Jan/24
$${Excellent}!\:{i}\:{had}\:{to}\:{subtract}\:\mathrm{32}−\mathrm{23} \\ $$$${an}\:{hour}\:{back}\:{when}\:{i}\:{thought}\:{to}\:{ask} \\ $$$${this}\:{this}\:{way}! \\ $$
Commented by MM42 last updated on 08/Jan/24
$$ \\ $$$$\mathrm{62}−\mathrm{6}^{\mathrm{2}} =\mathrm{26}\: \\ $$
Commented by Rasheed.Sindhi last updated on 12/Jan/24
$$\mathbb{T}\mathrm{hanks}\:\mathrm{sir},\:\mathrm{I}'\mathrm{ve}\:\mathrm{edited}\:\mathrm{my}\:\mathrm{solution} \\ $$$$\mathrm{to}\:\:\mathrm{cover}\:\mathrm{all}\:\:\mathrm{answers}.\: \\ $$
Answered by esmaeil last updated on 08/Jan/24
$${log}\left(\mathrm{10}{A}+{B}−\mathrm{10}{B}−{A}\right)={logA}^{{B}} \rightarrow \\ $$$${log}\left(\mathrm{9}{A}−\mathrm{9}{B}\right)={logA}^{{B}} \rightarrow \\ $$$${log}\mathrm{9}={logA}^{{B}} −{log}\left({A}−{B}\right)\rightarrow \\ $$$${log}\mathrm{9}={log}\left(\frac{{A}^{{B}} }{{A}−{B}}\right)= \\ $$$${log}\left(\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{3}−\mathrm{2}}\right)\rightarrow\begin{cases}{{A}=\mathrm{3}}\\{{B}=\mathrm{2}}\end{cases} \\ $$$$ \\ $$