Menu Close

Question-203055




Question Number 203055 by mr W last updated on 08/Jan/24
Commented by mr W last updated on 08/Jan/24
is it possible to determine the   unknown area in terms of other  partial areas A,B,C,D,E?
$${is}\:{it}\:{possible}\:{to}\:{determine}\:{the}\: \\ $$$${unknown}\:{area}\:{in}\:{terms}\:{of}\:{other} \\ $$$${partial}\:{areas}\:{A},{B},{C},{D},{E}? \\ $$
Commented by ajfour last updated on 09/Jan/24
i think, yes.  We assume four angles and one side  as variables.  System is unique. Five equations  can be written using these given   areas to find them.
$${i}\:{think},\:{yes}. \\ $$$${We}\:{assume}\:{four}\:{angles}\:{and}\:{one}\:{side} \\ $$$${as}\:{variables}. \\ $$$${System}\:{is}\:{unique}.\:{Five}\:{equations} \\ $$$${can}\:{be}\:{written}\:{using}\:{these}\:{given}\: \\ $$$${areas}\:{to}\:{find}\:{them}. \\ $$
Commented by mr W last updated on 09/Jan/24
but the equations are non−linear,  see below. so i don′t think they are  solvable.
$${but}\:{the}\:{equations}\:{are}\:{non}−{linear}, \\ $$$${see}\:{below}.\:{so}\:{i}\:{don}'{t}\:{think}\:{they}\:{are} \\ $$$${solvable}. \\ $$
Commented by mr W last updated on 12/Jan/24
four angles and one side don′t make  the system unique as following  figure shows. though the blue star  and the green star have equal angles  and one common equal side (red),   but they are different.
$${four}\:{angles}\:{and}\:{one}\:{side}\:{don}'{t}\:{make} \\ $$$${the}\:{system}\:{unique}\:{as}\:{following} \\ $$$${figure}\:{shows}.\:{though}\:{the}\:{blue}\:{star} \\ $$$${and}\:{the}\:{green}\:{star}\:{have}\:{equal}\:{angles} \\ $$$${and}\:{one}\:{common}\:{equal}\:{side}\:\left({red}\right),\: \\ $$$${but}\:{they}\:{are}\:{different}. \\ $$
Commented by mr W last updated on 12/Jan/24
Answered by mr W last updated on 09/Jan/24
Commented by mr W last updated on 09/Jan/24
at first let′s find the side lengthes   of a triangle if its area is S and its  interior angles are α, β and γ   respectively with α+β+γ=180°.  a=2R sin α  b=2R sin β  c=2R sin γ  S=((abc)/(4R))=((8R^3  sin α sin β sin γ)/(4R))=2R^2  sin α sin β sin γ  ⇒R=(√(S/(2 sin α sin β sin γ)))  ⇒a=(√((2S sin α)/(sin β sin γ)))  ⇒b=(√((2S sin β)/(sin γ sin α)))  ⇒c=(√((2S sin γ)/(sin α sin β)))
$${at}\:{first}\:{let}'{s}\:{find}\:{the}\:{side}\:{lengthes}\: \\ $$$${of}\:{a}\:{triangle}\:{if}\:{its}\:{area}\:{is}\:{S}\:{and}\:{its} \\ $$$${interior}\:{angles}\:{are}\:\alpha,\:\beta\:{and}\:\gamma\: \\ $$$${respectively}\:{with}\:\alpha+\beta+\gamma=\mathrm{180}°. \\ $$$${a}=\mathrm{2}{R}\:\mathrm{sin}\:\alpha \\ $$$${b}=\mathrm{2}{R}\:\mathrm{sin}\:\beta \\ $$$${c}=\mathrm{2}{R}\:\mathrm{sin}\:\gamma \\ $$$${S}=\frac{{abc}}{\mathrm{4}{R}}=\frac{\mathrm{8}{R}^{\mathrm{3}} \:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}{\mathrm{4}{R}}=\mathrm{2}{R}^{\mathrm{2}} \:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma \\ $$$$\Rightarrow{R}=\sqrt{\frac{{S}}{\mathrm{2}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}} \\ $$$$\Rightarrow{a}=\sqrt{\frac{\mathrm{2}{S}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}} \\ $$$$\Rightarrow{b}=\sqrt{\frac{\mathrm{2}{S}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\gamma\:\mathrm{sin}\:\alpha}} \\ $$$$\Rightarrow{c}=\sqrt{\frac{\mathrm{2}{S}\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta}} \\ $$
Commented by mr W last updated on 10/Jan/24
Commented by mr W last updated on 12/Jan/24
say the angles of the 5−point star   are θ_1 ,θ_2 ,θ_3 ,θ_4 ,θ_5  respectively.  θ_1 +θ_2 +θ_3 +θ_4 +θ_5 =180°   ...(vi)  so in fact we have only four   unknown angles.  ϕ_1 =θ_2 +θ_4   ϕ_2 =θ_3 +θ_5   ϕ_3 =θ_4 +θ_1   ϕ_4 =θ_5 +θ_2   ϕ_5 =θ_1 +θ_3     say the unknown area in the middle  is X.  according to above we have  a_1 =(√((2S_1  sin ϕ_2 )/(sin θ_1  sin ϕ_1 )))=(√((2S_1  sin (θ_3 +θ_5 ))/(sin θ_1  sin (θ_2 +θ_4 ))))  b_1 =(√((2S_1  sin ϕ_1 )/(sin θ_1  sin ϕ_2 )))=(√((2S_1  sin (θ_2 +θ_4 ))/(sin θ_1  sin (θ_3 +θ_5 ))))  c_1 =(√((2S_1  sin θ_1 )/(sin ϕ_1  sin ϕ_2 )))=(√((2S_1  sin θ_1 )/(sin (θ_2 +θ_4 ) sin (θ_3 +θ_5 ))))  P_1 Q_3 =b_1 +c_2 =(√((2S_1  sin (θ_2 +θ_4 ))/(sin θ_1  sin (θ_3 +θ_5 ))))+(√((2S_2  sin θ_2 )/(sin (θ_3 +θ_5 ) sin (θ_4 +θ_1 ))))  P_1 Q_3 =(√((2(S_1 +S_4 +X) sin θ_4 )/(sin θ_1  sin (θ_1 +θ_4 ))))  (√((S_1  sin (θ_2 +θ_4 ))/(sin θ_1  sin (θ_3 +θ_5 ))))+(√((S_2  sin θ_2 )/(sin (θ_3 +θ_5 ) sin (θ_4 +θ_1 ))))=(√(((S_1 +S_4 +X) sin θ_4 )/(sin θ_1  sin (θ_1 +θ_4 ))))     ⇒(√(S_1  sin (θ_4 +θ_1 ) sin (θ_2 +θ_4 )))+(√(S_2  sin θ_1  sin θ_2 ))=(√((S_1 +S_4 +X) sin θ_4  sin (θ_3 +θ_5 )))   ...(i)  similarly  (√((S_2  sin (θ_3 +θ_5 ))/(sin θ_2  sin (θ_4 +θ_1 ))))+(√((S_3  sin θ_3 )/(sin (θ_4 +θ_1 ) sin (θ_5 +θ_2 ))))=(√(((S_2 +S_5 +X) sin θ_5 )/(sin θ_2  sin (θ_2 +θ_5 ))))   ⇒(√(S_2  sin (θ_5 +θ_2 ) sin (θ_3 +θ_5 )))+(√(S_3  sin θ_2  sin θ_3 ))=(√((S_2 +S_5 +X) sin θ_5  sin (θ_4 +θ_1 )))   ...(ii)  (√((S_3  sin (θ_4 +θ_1 ))/(sin θ_3  sin (θ_5 +θ_2 ))))+(√((S_4  sin θ_4 )/(sin (θ_5 +θ_2 ) sin (θ_1 +θ_3 ))))=(√(((S_3 +S_1 +X) sin θ_1 )/(sin θ_3  sin (θ_3 +θ_1 ))))     ⇒(√(S_3  sin (θ_1 +θ_3 ) sin (θ_4 +θ_1 )))+(√(S_4  sin θ_3  sin θ_4 ))=(√((S_3 +S_1 +X) sin θ_1  sin (θ_5 +θ_2 )))   ...(iii)  (√((S_4  sin (θ_5 +θ_2 ))/(sin θ_4  sin (θ_1 +θ_3 ))))+(√((S_5  sin θ_5 )/(sin (θ_1 +θ_3 ) sin (θ_2 +θ_4 ))))=(√(((S_4 +S_2 +X) sin θ_2 )/(sin θ_4  sin (θ_4 +θ_2 ))))    ⇒(√(S_4  sin (θ_2 +θ_4 ) sin (θ_5 +θ_2 )))+(√(S_5  sin θ_4  sin θ_5 ))=(√((S_4 +S_2 +X) sin θ_2  sin (θ_1 +θ_3 )))   ...(iv)  (√((S_5  sin (θ_1 +θ_3 ))/(sin θ_5  sin (θ_2 +θ_4 ))))+(√((S_1  sin θ_1 )/(sin (θ_2 +θ_4 ) sin (θ_3 +θ_5 ))))=(√(((S_5 +S_3 +X) sin θ_3 )/(sin θ_5  sin (θ_5 +θ_3 ))))    ⇒(√(S_5  sin (θ_3 +θ_5 ) sin (θ_1 +θ_3 )))+(√(S_1  sin θ_5  sin θ_1 ))=(√((S_5 +S_3 +X) sin θ_3  sin (θ_2 +θ_3 )))   ...(v)    we have 6 equations for 6 unknowns:  θ_1 ,θ_2 ,θ_3 ,θ_4 ,θ_5  and X.
$${say}\:{the}\:{angles}\:{of}\:{the}\:\mathrm{5}−{point}\:{star}\: \\ $$$${are}\:\theta_{\mathrm{1}} ,\theta_{\mathrm{2}} ,\theta_{\mathrm{3}} ,\theta_{\mathrm{4}} ,\theta_{\mathrm{5}} \:{respectively}. \\ $$$$\theta_{\mathrm{1}} +\theta_{\mathrm{2}} +\theta_{\mathrm{3}} +\theta_{\mathrm{4}} +\theta_{\mathrm{5}} =\mathrm{180}°\:\:\:…\left({vi}\right) \\ $$$${so}\:{in}\:{fact}\:{we}\:{have}\:{only}\:{four}\: \\ $$$${unknown}\:{angles}. \\ $$$$\varphi_{\mathrm{1}} =\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \\ $$$$\varphi_{\mathrm{2}} =\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \\ $$$$\varphi_{\mathrm{3}} =\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \\ $$$$\varphi_{\mathrm{4}} =\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \\ $$$$\varphi_{\mathrm{5}} =\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \\ $$$$ \\ $$$${say}\:{the}\:{unknown}\:{area}\:{in}\:{the}\:{middle} \\ $$$${is}\:{X}. \\ $$$${according}\:{to}\:{above}\:{we}\:{have} \\ $$$${a}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\varphi_{\mathrm{2}} }{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\varphi_{\mathrm{1}} }}=\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}} \\ $$$${b}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\varphi_{\mathrm{1}} }{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\varphi_{\mathrm{2}} }}=\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}} \\ $$$${c}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }{\mathrm{sin}\:\varphi_{\mathrm{1}} \:\mathrm{sin}\:\varphi_{\mathrm{2}} }}=\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }{\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}} \\ $$$${P}_{\mathrm{1}} {Q}_{\mathrm{3}} ={b}_{\mathrm{1}} +{c}_{\mathrm{2}} =\sqrt{\frac{\mathrm{2}{S}_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}}+\sqrt{\frac{\mathrm{2}{S}_{\mathrm{2}} \:\mathrm{sin}\:\theta_{\mathrm{2}} }{\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)}} \\ $$$${P}_{\mathrm{1}} {Q}_{\mathrm{3}} =\sqrt{\frac{\mathrm{2}\left({S}_{\mathrm{1}} +{S}_{\mathrm{4}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{4}} }{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{4}} \right)}} \\ $$$$\sqrt{\frac{{S}_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}}+\sqrt{\frac{{S}_{\mathrm{2}} \:\mathrm{sin}\:\theta_{\mathrm{2}} }{\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)}}=\sqrt{\frac{\left({S}_{\mathrm{1}} +{S}_{\mathrm{4}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{4}} }{\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{4}} \right)}}\:\:\: \\ $$$$\Rightarrow\sqrt{{S}_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}+\sqrt{{S}_{\mathrm{2}} \:\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{2}} }=\sqrt{\left({S}_{\mathrm{1}} +{S}_{\mathrm{4}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{4}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}\:\:\:…\left({i}\right) \\ $$$${similarly} \\ $$$$\sqrt{\frac{{S}_{\mathrm{2}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}{\mathrm{sin}\:\theta_{\mathrm{2}} \:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)}}+\sqrt{\frac{{S}_{\mathrm{3}} \:\mathrm{sin}\:\theta_{\mathrm{3}} }{\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)}}=\sqrt{\frac{\left({S}_{\mathrm{2}} +{S}_{\mathrm{5}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{5}} }{\mathrm{sin}\:\theta_{\mathrm{2}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{5}} \right)}}\: \\ $$$$\Rightarrow\sqrt{{S}_{\mathrm{2}} \:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}+\sqrt{{S}_{\mathrm{3}} \:\mathrm{sin}\:\theta_{\mathrm{2}} \:\mathrm{sin}\:\theta_{\mathrm{3}} }=\sqrt{\left({S}_{\mathrm{2}} +{S}_{\mathrm{5}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{5}} \:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)}\:\:\:…\left({ii}\right) \\ $$$$\sqrt{\frac{{S}_{\mathrm{3}} \:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)}{\mathrm{sin}\:\theta_{\mathrm{3}} \:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)}}+\sqrt{\frac{{S}_{\mathrm{4}} \:\mathrm{sin}\:\theta_{\mathrm{4}} }{\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)}}=\sqrt{\frac{\left({S}_{\mathrm{3}} +{S}_{\mathrm{1}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{1}} }{\mathrm{sin}\:\theta_{\mathrm{3}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{1}} \right)}}\:\:\: \\ $$$$\Rightarrow\sqrt{{S}_{\mathrm{3}} \:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{1}} \right)}+\sqrt{{S}_{\mathrm{4}} \:\mathrm{sin}\:\theta_{\mathrm{3}} \:\mathrm{sin}\:\theta_{\mathrm{4}} }=\sqrt{\left({S}_{\mathrm{3}} +{S}_{\mathrm{1}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{1}} \:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)}\:\:\:…\left({iii}\right) \\ $$$$\sqrt{\frac{{S}_{\mathrm{4}} \:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)}{\mathrm{sin}\:\theta_{\mathrm{4}} \:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)}}+\sqrt{\frac{{S}_{\mathrm{5}} \:\mathrm{sin}\:\theta_{\mathrm{5}} }{\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}}=\sqrt{\frac{\left({S}_{\mathrm{4}} +{S}_{\mathrm{2}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{2}} }{\mathrm{sin}\:\theta_{\mathrm{4}} \:\mathrm{sin}\:\left(\theta_{\mathrm{4}} +\theta_{\mathrm{2}} \right)}}\:\: \\ $$$$\Rightarrow\sqrt{{S}_{\mathrm{4}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{2}} \right)}+\sqrt{{S}_{\mathrm{5}} \:\mathrm{sin}\:\theta_{\mathrm{4}} \:\mathrm{sin}\:\theta_{\mathrm{5}} }=\sqrt{\left({S}_{\mathrm{4}} +{S}_{\mathrm{2}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{2}} \:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)}\:\:\:…\left({iv}\right) \\ $$$$\sqrt{\frac{{S}_{\mathrm{5}} \:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)}{\mathrm{sin}\:\theta_{\mathrm{5}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)}}+\sqrt{\frac{{S}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }{\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{4}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)}}=\sqrt{\frac{\left({S}_{\mathrm{5}} +{S}_{\mathrm{3}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{3}} }{\mathrm{sin}\:\theta_{\mathrm{5}} \:\mathrm{sin}\:\left(\theta_{\mathrm{5}} +\theta_{\mathrm{3}} \right)}}\:\: \\ $$$$\Rightarrow\sqrt{{S}_{\mathrm{5}} \:\mathrm{sin}\:\left(\theta_{\mathrm{3}} +\theta_{\mathrm{5}} \right)\:\mathrm{sin}\:\left(\theta_{\mathrm{1}} +\theta_{\mathrm{3}} \right)}+\sqrt{{S}_{\mathrm{1}} \:\mathrm{sin}\:\theta_{\mathrm{5}} \:\mathrm{sin}\:\theta_{\mathrm{1}} }=\sqrt{\left({S}_{\mathrm{5}} +{S}_{\mathrm{3}} +{X}\right)\:\mathrm{sin}\:\theta_{\mathrm{3}} \:\mathrm{sin}\:\left(\theta_{\mathrm{2}} +\theta_{\mathrm{3}} \right)}\:\:\:…\left({v}\right) \\ $$$$ \\ $$$${we}\:{have}\:\mathrm{6}\:{equations}\:{for}\:\mathrm{6}\:{unknowns}: \\ $$$$\theta_{\mathrm{1}} ,\theta_{\mathrm{2}} ,\theta_{\mathrm{3}} ,\theta_{\mathrm{4}} ,\theta_{\mathrm{5}} \:{and}\:{X}. \\ $$
Commented by lazyboy last updated on 11/Jan/24
Commented by MathematicalUser2357 last updated on 20/Jan/24
unsolvable integral
$${unsolvable}\:{integral} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *