Menu Close

if-p-x-2-x-2-x-1-2-x-4-1-4-x-2-and-x-4-x-2-then-show-that-32-p-2-80-




Question Number 203066 by mathlove last updated on 09/Jan/24
if p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))   and x−(4/x)=2  then show that  (((32)/p))^2 =80
ifp=x2x2x1+2x41+4x2andx4x=2thenshowthat(32p)2=80
Answered by Rasheed.Sindhi last updated on 09/Jan/24
if p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))   and x−(4/x)=2  then show that  (((32)/p))^2 =80_ _                              •p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))     =(x/(1−(2/x)))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))    =((x(1+(2/x))(1+(4/x^2 ))−x(1−(2/x))(1+(4/x^2 ))−4(1−(2/x))(1+(2/x)))/((1−(2/x))(1+(2/x))(1+(4/x^2 ))))    =(((x+2)(1+(4/x^2 ))+(2−x)(1+(4/x^2 ))−4(1−(2/x))(1+(2/x)))/((1−(4/x^2 ))(1+(4/x^2 ))))    =(((1+(4/x^2 ))(x+2+2−x)−4(1−(2/x))(1+(2/x)))/((1−((16)/x^4 ))))    =((4(1+(4/x^2 ))−4(1−(4/x^2 )))/((x^4 −16)/x^4 ))    =((4(1+(4/x^2 )−1+(4/x^2 )))/((x^4 −16)/x^4 ))    =((4((8/x^2 )))/((x^4 −16)/x^4 ))     =((32)/x^2 )×(x^4 /(x^4 −16))    =((32x^2 )/(x^4 −16))    =((32)/(x^2 −((16)/x^2 )))   =((32)/((x−(4/x))(x+(4/x))))   =((32)/((2)(x+(4/x))))    p=((16)/(x+(4/x)))  • p^2 =((16^2 )/((x+(4/x))^2 ))=((16^2 )/((x−(4/x))^2 +16))=((16^2 )/((2)^2 +16))=((16^2 )/(20))  ▶ (((32)/p))^2 =((32^2 )/p^2 )=((32^2 )/((16^2 )/(20)))=32^2 ×((20)/(16^2 ))=80
ifp=x2x2x1+2x41+4x2andx4x=2thenshowthat(32p)2=80p=x2x2x1+2x41+4x2=x12xx1+2x41+4x2=x(1+2x)(1+4x2)x(12x)(1+4x2)4(12x)(1+2x)(12x)(1+2x)(1+4x2)=(x+2)(1+4x2)+(2x)(1+4x2)4(12x)(1+2x)(14x2)(1+4x2)=(1+4x2)(x+2+2x)4(12x)(1+2x)(116x4)=4(1+4x2)4(14x2)x416x4=4(1+4x21+4x2)x416x4=4(8x2)x416x4=32x2×x4x416=32x2x416=32x216x2=32(x4x)(x+4x)=32(2)(x+4x)p=16x+4xp2=162(x+4x)2=162(x4x)2+16=162(2)2+16=16220(32p)2=322p2=32216220=322×20162=80
Answered by Rasheed.Sindhi last updated on 10/Jan/24
x−(4/x)=2⇒ determinant (((x^2 =2x+4)))   p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))     =((2x+4)/(x−2))−(x/(1+(2/x)))−(4/(1+(4/(2x+4))))    =((2(x+2))/(x−2))−(x^2 /(x+2))−(4/((2x+8)/(2x+4)))    =((2(x+2))/(x−2))−((2x+4)/(x+2))−((4(x+2))/(x+4))    =((2(x+2))/(x−2))−((4(x+2))/(x+4))−2    =((2(x+2)(x+4)−4(x+2)(x−2))/((x−2)(x+4)))−2    =((2x^2 +12x+16−4x^2 +16)/(x^2 +2x−8))−2    =((−2x^2 +12x+32)/(x^2 +2x−8))−2    =((−2x^2 +12x+32−2x^2 −4x+16)/(x^2 +2x−8))    =((−4x^2 +8x+48)/(x^2 +2x−8))    =((−4(2x+4)+8x+48)/(2x+4+2x−8))  =((−8x−16+8x+48)/(4x−4))=((32)/(4(x−1)))=(8/(x−1))  ▶(((32)/p))^2 =(((32)/(8/(x−1))))^2 =(((32(x−1))/8))^2   =16(x^2 −2x+1)  =16(2x+4−2x+1)=16(5)=80
x4x=2x2=2x+4p=x2x2x1+2x41+4x2=2x+4x2x1+2x41+42x+4=2(x+2)x2x2x+242x+82x+4=2(x+2)x22x+4x+24(x+2)x+4=2(x+2)x24(x+2)x+42=2(x+2)(x+4)4(x+2)(x2)(x2)(x+4)2=2x2+12x+164x2+16x2+2x82=2x2+12x+32x2+2x82=2x2+12x+322x24x+16x2+2x8=4x2+8x+48x2+2x8=4(2x+4)+8x+482x+4+2x8=8x16+8x+484x4=324(x1)=8x1(32p)2=(328x1)2=(32(x1)8)2=16(x22x+1)=16(2x+42x+1)=16(5)=80
Commented by mathlove last updated on 09/Jan/24
ok thanks
okthanks
Answered by AST last updated on 09/Jan/24
x^2 −4=2x⇒(x−2)(x+2)=2x  (x−1)^2 −5=0⇒x=1+_− (√5)  ⇒p=(x/(2/(x+2)))−(x/(2/(x−2)))−(4/(((x+4))/((x+2))))=((x(x+2)−x(x−2))/2)−((4(x+2))/(x+4))  =2x−((4(x+2))/(x+4))=((2(x^2 +2x−4))/(x+4))=((8x)/(x+4))  (((32)/p))^2 =[((32(x+4))/(8x))]^2 =[((4(x+4))/x)]^2 =(4+((16)/x))^2 =(+_− 4(√5))^2 =80
x24=2x(x2)(x+2)=2x(x1)25=0x=1+5p=x2x+2x2x24(x+4)(x+2)=x(x+2)x(x2)24(x+2)x+4=2x4(x+2)x+4=2(x2+2x4)x+4=8xx+4(32p)2=[32(x+4)8x]2=[4(x+4)x]2=(4+16x)2=(+45)2=80
Answered by AST last updated on 09/Jan/24
p=(x^2 /(x−2))−(x^2 /(x+2))−((4x^2 )/(x^2 +4))=4x^2 ((1/(x^2 −4))−(1/(x^2 +4)))  =((32x^2 )/((x^2 −4)(x^2 +4)))=((32x^2 )/(2x(2x+8)))=((8x)/(x+4))  ⇒(((32)/p))^2 =[((4(x+4))/x)]^2 =(+_− 4(√5))^2 =80
p=x2x2x2x+24x2x2+4=4x2(1x241x2+4)=32x2(x24)(x2+4)=32x22x(2x+8)=8xx+4(32p)2=[4(x+4)x]2=(+45)2=80
Answered by Rasheed.Sindhi last updated on 09/Jan/24
x−(4/x)=2⇒ determinant ((((4/x)=x−2)))⇒ determinant ((((2/x)=((x−2)/2))))                   ⇒ determinant (((x^2 =2x+4)))   p=(x^2 /(x−2))−(x/(1+(2/x)))−(4/(1+(4/x^2 )))     =(x/(1−(2/x)))−(x/(1+(2/x)))−(4/(1+(4/x)∙(1/x)))    =(x/(1−((x−2)/2)))−(x/(1+((x−2)/2)))−(4/(1+(x−2)((1/x))))    =(x/((2−x+2)/2))−(x/((2+x−2)/2))−(4/(1+((x−2)/x)))    =(x/((4−x)/2))−(x/(x/2))−(4/(1+1−(2/x)))    =((2x)/(4−x))−2−(4/(2−((x−2)/2)))    =((2x)/(4−x))−2−(4/((6−x)/2))    =((2x)/(4−x))−(8/(6−x))−2     =((12x−2x^2 −32+8x)/(x^2 −10x+24))−2    =((−2x^2 +20x−32−2x^2 +20x−48)/(x^2 −10x+24))    =((−4x^2 +40x−96−80+96)/(x^2 −10x+24))=((−4(2x+4)+40x−80)/(2x+4−10x+24))  =((−8x−16+40x−80)/(−8x+28))  =((32x−96)/(−8x+28))  =((8x−24)/(−2x+7))  ▶(((32)/p))^2 =((32^2 )/p^2 )=((32^2 )/((64(x−3)^2 )/((−2x+7)^2 )))  =((32×32(−2x+7)^2 )/(64(x−3)^2 ))=((16(4x^2 −28x+49))/(x^2 −6x+9))  =((16{4(2x+4)−28x+49})/(2x+4−6x+9))=((16(−20x+65))/(−4x+13))=((16×5(−4x+13))/(−4x+13))=80
x4x=24x=x22x=x22x2=2x+4p=x2x2x1+2x41+4x2=x12xx1+2x41+4x1x=x1x22x1+x2241+(x2)(1x)=x2x+22x2+x2241+x2x=x4x2xx241+12x=2x4x242x22=2x4x246x2=2x4x86x2=12x2x232+8xx210x+242=2x2+20x322x2+20x48x210x+24=4x2+40x9680+96x210x+24=4(2x+4)+40x802x+410x+24=8x16+40x808x+28=32x968x+28=8x242x+7(32p)2=322p2=32264(x3)2(2x+7)2=32×32(2x+7)264(x3)2=16(4x228x+49)x26x+9=16{4(2x+4)28x+49}2x+46x+9=16(20x+65)4x+13=16×5(4x+13)4x+13=80
Commented by mathlove last updated on 10/Jan/24
so good
sogood

Leave a Reply

Your email address will not be published. Required fields are marked *