Menu Close

please-solve-it-x-x-2-e-xlnx-x-ln-x-2-2ln2-x-e-x-sin-x-2-dx-




Question Number 203111 by lazyboy last updated on 10/Jan/24
please solve it  ∫[x^(x/2) +e^(xlnx) +(((Π+(√x)ln(x))^2 )/(2ln2(√(x−e^x sin x))))]^2 dx=?
$${please}\:{solve}\:{it} \\ $$$$\int\left[{x}^{\frac{{x}}{\mathrm{2}}} +{e}^{{xlnx}} +\frac{\left(\Pi+\sqrt{{x}}{ln}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{2}{ln}\mathrm{2}\sqrt{{x}−{e}^{{x}} \mathrm{sin}\:{x}}}\right]^{\mathrm{2}} {dx}=? \\ $$
Commented by lazyboy last updated on 11/Jan/24
Commented by mr W last updated on 11/Jan/24
(following answer is copied from   an other post to the same question)  it′s unsolvable!  besides it′s also non−sense to stack  a lot of different functions and  symbols senselessly together and  create so−called hard looking   questions. sorry i′m not so good to  be able to solve such “hard” questions.  actually i also don′t want to try to  solve them, because i don′t see any  sense in them.
$$\left({following}\:{answer}\:{is}\:{copied}\:{from}\:\right. \\ $$$$\left.{an}\:{other}\:{post}\:{to}\:{the}\:{same}\:{question}\right) \\ $$$${it}'{s}\:{unsolvable}! \\ $$$${besides}\:{it}'{s}\:{also}\:{non}−{sense}\:{to}\:{stack} \\ $$$${a}\:{lot}\:{of}\:{different}\:{functions}\:{and} \\ $$$${symbols}\:{senselessly}\:{together}\:{and} \\ $$$${create}\:{so}−{called}\:{hard}\:{looking}\: \\ $$$${questions}.\:{sorry}\:{i}'{m}\:{not}\:{so}\:{good}\:{to} \\ $$$${be}\:{able}\:{to}\:{solve}\:{such}\:“{hard}''\:{questions}. \\ $$$${actually}\:{i}\:{also}\:{don}'{t}\:{want}\:{to}\:{try}\:{to} \\ $$$${solve}\:{them},\:{because}\:{i}\:{don}'{t}\:{see}\:{any} \\ $$$${sense}\:{in}\:{them}. \\ $$
Answered by MathematicalUser2357 last updated on 11/Jan/24
∫{x^(x/2) +e^(xln x) +(((π+(√x)ln x)^2 )/(2ln 2∙(√(x−e^x sin x))))}dx  Unsolvable integral
$$\int\left\{{x}^{\frac{{x}}{\mathrm{2}}} +{e}^{{x}\mathrm{ln}\:{x}} +\frac{\left(\pi+\sqrt{{x}}\mathrm{ln}\:{x}\right)^{\mathrm{2}} }{\mathrm{2ln}\:\mathrm{2}\centerdot\sqrt{{x}−{e}^{{x}} \mathrm{sin}\:{x}}}\right\}{dx} \\ $$$$\mathrm{Unsolvable}\:\mathrm{integral} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *