Question Number 203111 by lazyboy last updated on 10/Jan/24
$${please}\:{solve}\:{it} \\ $$$$\int\left[{x}^{\frac{{x}}{\mathrm{2}}} +{e}^{{xlnx}} +\frac{\left(\Pi+\sqrt{{x}}{ln}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{2}{ln}\mathrm{2}\sqrt{{x}−{e}^{{x}} \mathrm{sin}\:{x}}}\right]^{\mathrm{2}} {dx}=? \\ $$
Commented by lazyboy last updated on 11/Jan/24
Commented by mr W last updated on 11/Jan/24
$$\left({following}\:{answer}\:{is}\:{copied}\:{from}\:\right. \\ $$$$\left.{an}\:{other}\:{post}\:{to}\:{the}\:{same}\:{question}\right) \\ $$$${it}'{s}\:{unsolvable}! \\ $$$${besides}\:{it}'{s}\:{also}\:{non}−{sense}\:{to}\:{stack} \\ $$$${a}\:{lot}\:{of}\:{different}\:{functions}\:{and} \\ $$$${symbols}\:{senselessly}\:{together}\:{and} \\ $$$${create}\:{so}−{called}\:{hard}\:{looking}\: \\ $$$${questions}.\:{sorry}\:{i}'{m}\:{not}\:{so}\:{good}\:{to} \\ $$$${be}\:{able}\:{to}\:{solve}\:{such}\:“{hard}''\:{questions}. \\ $$$${actually}\:{i}\:{also}\:{don}'{t}\:{want}\:{to}\:{try}\:{to} \\ $$$${solve}\:{them},\:{because}\:{i}\:{don}'{t}\:{see}\:{any} \\ $$$${sense}\:{in}\:{them}. \\ $$
Answered by MathematicalUser2357 last updated on 11/Jan/24
$$\int\left\{{x}^{\frac{{x}}{\mathrm{2}}} +{e}^{{x}\mathrm{ln}\:{x}} +\frac{\left(\pi+\sqrt{{x}}\mathrm{ln}\:{x}\right)^{\mathrm{2}} }{\mathrm{2ln}\:\mathrm{2}\centerdot\sqrt{{x}−{e}^{{x}} \mathrm{sin}\:{x}}}\right\}{dx} \\ $$$$\mathrm{Unsolvable}\:\mathrm{integral} \\ $$