Menu Close

Question-203107




Question Number 203107 by cherokeesay last updated on 10/Jan/24
Commented by cherokeesay last updated on 10/Jan/24
     Find the length x.

Find the length x.

Answered by AST last updated on 10/Jan/24
Let DA and CB meet at E;AE=y and EB=z  (z/(z+12))=(m/(2m))=(1/2)⇒z=12;  (y/(y+15))=(1/2)⇒y=15  15^2 =12^2 +(m)^2 ⇒m=9  r(((30+24+18))/2)=(1/2)×24×2m=24×9⇒r=6  ⇒CF=r=6⇒DF=12⇒DG=12⇒x=3
$${Let}\:{DA}\:{and}\:{CB}\:{meet}\:{at}\:{E};{AE}={y}\:{and}\:{EB}={z} \\ $$$$\frac{{z}}{{z}+\mathrm{12}}=\frac{{m}}{\mathrm{2}{m}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{z}=\mathrm{12};\:\:\frac{{y}}{{y}+\mathrm{15}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{y}=\mathrm{15} \\ $$$$\mathrm{15}^{\mathrm{2}} =\mathrm{12}^{\mathrm{2}} +\left({m}\right)^{\mathrm{2}} \Rightarrow{m}=\mathrm{9} \\ $$$${r}\frac{\left(\mathrm{30}+\mathrm{24}+\mathrm{18}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{24}×\mathrm{2}{m}=\mathrm{24}×\mathrm{9}\Rightarrow{r}=\mathrm{6} \\ $$$$\Rightarrow{CF}={r}=\mathrm{6}\Rightarrow{DF}=\mathrm{12}\Rightarrow{DG}=\mathrm{12}\Rightarrow{x}=\mathrm{3} \\ $$
Commented by cherokeesay last updated on 10/Jan/24
So nice ! thank you !
$${So}\:{nice}\:!\:{thank}\:{you}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *