Menu Close

1-y-tg-2-x-y-2-lim-x-0-ln-1-2x-sin-2x-




Question Number 203158 by hardmath last updated on 11/Jan/24
1. y = tg^2  x   ⇒   y^′  = ?  2.  lim_(x→0)  ((ln (1 + 2x))/(sin 2x)) = ?
$$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tg}^{\mathrm{2}} \:\mathrm{x}\:\:\:\Rightarrow\:\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{2x}\right)}{\mathrm{sin}\:\mathrm{2x}}\:=\:? \\ $$
Answered by shunmisaki007 last updated on 11/Jan/24
1. Are t, g, and x all variable or one or two of them constant?  2. Because lim_(x→0)  ln(1+2x) = 0  and lim_(x→0)  sin(2x) = 0,  by L′hopital′s rule,  lim_(x→0)  ((ln(1+2x))/(sin(2x))) = lim_(x→0)  (((d/dx)(ln(1+2x)))/((d/dx)(sin(2x))))     = lim_(x→0)  ((2/(1+2x))/(2cos(2x)))     = 1. ★
$$\mathrm{1}.\:\mathrm{Are}\:{t},\:{g},\:\mathrm{and}\:{x}\:\mathrm{all}\:\mathrm{variable}\:\mathrm{or}\:\mathrm{one}\:\mathrm{or}\:\mathrm{two}\:\mathrm{of}\:\mathrm{them}\:\mathrm{constant}? \\ $$$$\mathrm{2}.\:\mathrm{Because}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{sin}\left(\mathrm{2}{x}\right)\:=\:\mathrm{0}, \\ $$$$\mathrm{by}\:\mathrm{L}'\mathrm{hopital}'\mathrm{s}\:\mathrm{rule}, \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{sin}\left(\mathrm{2}{x}\right)}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\left(\mathrm{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)\right)}{\frac{{d}}{{dx}}\left(\mathrm{sin}\left(\mathrm{2}{x}\right)\right)} \\ $$$$\:\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{2}}{\mathrm{1}+\mathrm{2}{x}}}{\mathrm{2cos}\left(\mathrm{2}{x}\right)} \\ $$$$\:\:\:=\:\mathrm{1}.\:\bigstar \\ $$
Commented by Frix last updated on 11/Jan/24
tg x =tan x  tg^2  x =tan^2  x =(tan x)^2
$${tg}\:{x}\:=\mathrm{tan}\:{x} \\ $$$${tg}^{\mathrm{2}} \:{x}\:=\mathrm{tan}^{\mathrm{2}} \:{x}\:=\left(\mathrm{tan}\:{x}\right)^{\mathrm{2}} \\ $$
Answered by witcher3 last updated on 11/Jan/24
=lim_(x→0) ((ln(1+2x))/(2x)).(1/((sin(2x))/(2x)))=1.(1/1)=1
$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right)}{\mathrm{2x}}.\frac{\mathrm{1}}{\frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2x}}}=\mathrm{1}.\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1} \\ $$
Answered by shunmisaki007 last updated on 11/Jan/24
1. y=tan^2 (x)  y′=2tan(x)sec^2 (x)=2tan(x)+2tan^3 (x) ★
$$\mathrm{1}.\:{y}=\mathrm{tan}^{\mathrm{2}} \left({x}\right) \\ $$$${y}'=\mathrm{2tan}\left({x}\right)\mathrm{sec}^{\mathrm{2}} \left({x}\right)=\mathrm{2tan}\left({x}\right)+\mathrm{2tan}^{\mathrm{3}} \left({x}\right)\:\bigstar \\ $$
Commented by Frix last updated on 11/Jan/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *