Menu Close

f-x-2-x-1-7-x-1-0-4-f-x-dx-




Question Number 203186 by lorance last updated on 11/Jan/24
f(x)={_(2        x=1) ^(7        x≠1     ) ⇒ ∫_0 ^( 4) f(x)dx=?
$${f}\left({x}\right)=\left\{_{\mathrm{2}\:\:\:\:\:\:\:\:{x}=\mathrm{1}} ^{\mathrm{7}\:\:\:\:\:\:\:\:{x}\neq\mathrm{1}\:\:\:\:\:} \Rightarrow\:\int_{\mathrm{0}} ^{\:\mathrm{4}} {f}\left({x}\right){dx}=?\right. \\ $$
Answered by mr W last updated on 12/Jan/24
∫_0 ^4 f(x)dx  =∫_0 ^1 f(x)dx+∫_1 ^4 f(x)dx  =lim_(a→1^− ) ∫_0 ^a f(x)dx+lim_(b→1^+ ) ∫_b ^4 f(x)dx  =lim_(a→1^− ) 7×(a−0)+lim_(b→1^+ ) 7×(4−b)  =7×(1−0)+7×(4−1)  =7×(4−0)  =28
$$\int_{\mathrm{0}} ^{\mathrm{4}} {f}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}+\int_{\mathrm{1}} ^{\mathrm{4}} {f}\left({x}\right){dx} \\ $$$$=\underset{{a}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}+\underset{{b}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\int_{{b}} ^{\mathrm{4}} {f}\left({x}\right){dx} \\ $$$$=\underset{{a}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}7}×\left({a}−\mathrm{0}\right)+\underset{{b}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}7}×\left(\mathrm{4}−{b}\right) \\ $$$$=\mathrm{7}×\left(\mathrm{1}−\mathrm{0}\right)+\mathrm{7}×\left(\mathrm{4}−\mathrm{1}\right) \\ $$$$=\mathrm{7}×\left(\mathrm{4}−\mathrm{0}\right) \\ $$$$=\mathrm{28} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *