Menu Close

If-a-2-b-2-2-Then-2a-7-2b-7-6-




Question Number 203149 by hardmath last updated on 11/Jan/24
If   a^2  + b^2  = 2  Then   (√(2a + 7)) + (√(2b + 7)) ≤ 6
$$\mathrm{If}\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:=\:\mathrm{2} \\ $$$$\mathrm{Then}\:\:\:\sqrt{\mathrm{2a}\:+\:\mathrm{7}}\:+\:\sqrt{\mathrm{2b}\:+\:\mathrm{7}}\:\leqslant\:\mathrm{6} \\ $$
Commented by mr W last updated on 12/Jan/24
2(√5)_(a=b=−1) ≤ (√(2a+7))+(√(2b+7 ))≤6_(a=b=1)
$$\underset{{a}={b}=−\mathrm{1}} {\mathrm{2}\sqrt{\mathrm{5}}}\leqslant\:\sqrt{\mathrm{2}{a}+\mathrm{7}}+\sqrt{\mathrm{2}{b}+\mathrm{7}\:}\leqslant\underset{{a}={b}=\mathrm{1}} {\mathrm{6}} \\ $$
Answered by AST last updated on 11/Jan/24
Let p=2a+7;q=2b+7  ⇒p^2 =4a^2 +28a+49;q^2 =4b^2 +28b+49  ⇒p^2 +q^2 =4(a^2 +b^2 )+28(a+b)+98=106+28(a+b)  ≤106+28(2(√((a^2 +b^2 )/2)))=162  ⇒81≥((p^2 +q^2 )/2)≥(((p+q)/2))^2 ⇒9≥(√((p^2 +q^2 )/2))≥((p+q)/2)≥((((√p)+(√q))/2))^2   ⇒((((√p)+(√q))/2))^2 ≤9⇒(√p)+(√q)=(√(2a+7))+(√(2b+7))≤6
$${Let}\:{p}=\mathrm{2}{a}+\mathrm{7};{q}=\mathrm{2}{b}+\mathrm{7} \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} +\mathrm{28}{a}+\mathrm{49};{q}^{\mathrm{2}} =\mathrm{4}{b}^{\mathrm{2}} +\mathrm{28}{b}+\mathrm{49} \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)+\mathrm{28}\left({a}+{b}\right)+\mathrm{98}=\mathrm{106}+\mathrm{28}\left({a}+{b}\right) \\ $$$$\leqslant\mathrm{106}+\mathrm{28}\left(\mathrm{2}\sqrt{\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}}\right)=\mathrm{162} \\ $$$$\Rightarrow\mathrm{81}\geqslant\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{\mathrm{2}}\geqslant\left(\frac{{p}+{q}}{\mathrm{2}}\right)^{\mathrm{2}} \Rightarrow\mathrm{9}\geqslant\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{\mathrm{2}}}\geqslant\frac{{p}+{q}}{\mathrm{2}}\geqslant\left(\frac{\sqrt{{p}}+\sqrt{{q}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\frac{\sqrt{{p}}+\sqrt{{q}}}{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\mathrm{9}\Rightarrow\sqrt{{p}}+\sqrt{{q}}=\sqrt{\mathrm{2}{a}+\mathrm{7}}+\sqrt{\mathrm{2}{b}+\mathrm{7}}\leqslant\mathrm{6} \\ $$
Commented by hardmath last updated on 12/Jan/24
thank you dear professors
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professors} \\ $$
Answered by witcher3 last updated on 11/Jan/24
f(x)=x^(1/2)  is concave f′′(x)=−(1/4)x^(−(3/2)) <0  ⇒f(((a+b)/2))≥(1/2)f(a)+(1/2)f(b)  ⇒(√(2a+7))+(√(2b+7))≤2(√((2a+7+2b+7)/2))  ≤2(√(a+b+7))  (a+b)^2 ≤2(a^2 +b^2 )⇒a+b≤(√(2(a^2 +b^2 )))=2  ⇒LhS≤2.(√(2+7))=2.3=6
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{is}\:\mathrm{concave}\:\mathrm{f}''\left(\mathrm{x}\right)=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{−\frac{\mathrm{3}}{\mathrm{2}}} <\mathrm{0} \\ $$$$\Rightarrow\mathrm{f}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\right)\geqslant\frac{\mathrm{1}}{\mathrm{2}}\mathrm{f}\left(\mathrm{a}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{f}\left(\mathrm{b}\right) \\ $$$$\Rightarrow\sqrt{\mathrm{2a}+\mathrm{7}}+\sqrt{\mathrm{2b}+\mathrm{7}}\leqslant\mathrm{2}\sqrt{\frac{\mathrm{2a}+\mathrm{7}+\mathrm{2b}+\mathrm{7}}{\mathrm{2}}} \\ $$$$\leqslant\mathrm{2}\sqrt{\mathrm{a}+\mathrm{b}+\mathrm{7}} \\ $$$$\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} \leqslant\mathrm{2}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)\Rightarrow\mathrm{a}+\mathrm{b}\leqslant\sqrt{\mathrm{2}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{LhS}\leqslant\mathrm{2}.\sqrt{\mathrm{2}+\mathrm{7}}=\mathrm{2}.\mathrm{3}=\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *