Question Number 203144 by mustafazaheen last updated on 11/Jan/24
$$\mathrm{when}\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\pi<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\frac{\pi}{\mathrm{2}}\leqslant\mathrm{x}\leqslant\pi}\end{cases}\:\:\:\:\:\:\:\:\mathrm{find}\:\:{f}'\left(\mathrm{2}\pi\right)=? \\ $$
Commented by mr W last updated on 13/Jan/24
$$\mathrm{f}'\left(\mathrm{2}\pi\right)\:{doesn}'{t}\:{exist},\:{since}\:{f}\left({x}\right)\:{is}\:{not} \\ $$$${defined}\:{for}\:{x}>\mathrm{2}\pi. \\ $$