Question Number 203222 by Tawa11 last updated on 12/Jan/24
XYZ Ltd wants to borrow money to finance a project.
They can pay N2500 monthly in repayments. If the
interest rate is 5% and the load will be paid back
fully in 30 years, how much can the company afford
to borrow?
They can pay N2500 monthly in repayments. If the
interest rate is 5% and the load will be paid back
fully in 30 years, how much can the company afford
to borrow?
Commented by mr W last updated on 13/Jan/24
$${P}=\frac{\mathrm{2500}}{\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}}\left(\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}\right)^{\mathrm{30}×\mathrm{12}} }\right)\approx\mathrm{465700} \\ $$$${the}\:{derivation}\:{of}\:{formula}\:{see}\:{below}. \\ $$
Answered by mr W last updated on 13/Jan/24
$${say}\:{the}\:{loan}\:{you}\:{take}\:{from}\:{the}\:{bank} \\ $$$${is}\:{P}.\:{the}\:\left({yearly}\right)\:{interest}\:{rate}\:{is}\:{r}. \\ $$$${the}\:{mouthly}\:{payment}\:{is}\:{M}. \\ $$$${the}\:{mouthly}\:{interest}\:{rate}\:{is}\:{i}=\frac{{r}}{\mathrm{12}}. \\ $$$${at}\:{the}\:{very}\:{beginning}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\:{P}_{\mathrm{0}} ={P}. \\ $$$$ \\ $$$${after}\:{one}\:{month}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{\mathrm{1}} ={P}\left(\mathrm{1}+{i}\right)−{M}. \\ $$$$ \\ $$$${after}\:\mathrm{2}\:{months}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{\mathrm{2}} ={P}_{\mathrm{1}} \left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{\mathrm{2}} −{M}\left(\mathrm{1}+{i}\right)−{M} \\ $$$$ \\ $$$${after}\:\mathrm{3}\:{months}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{\mathrm{3}} ={P}_{\mathrm{2}} \left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{\mathrm{3}} −{M}\left(\mathrm{1}+{i}\right)^{\mathrm{2}} −{M}\left(\mathrm{1}+{i}\right)−{M} \\ $$$$……. \\ $$$${after}\:{n}\:{months}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{{n}} ={P}_{{n}−\mathrm{1}} \left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{{n}} −{M}\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{1}} −{M}\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{2}} −…−{M}\left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{{n}} −{M}\left[\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{1}} +\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{2}} +…+\left(\mathrm{1}+{i}\right)+\mathrm{1}\right] \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{{n}} −{M}×\frac{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}{\left(\mathrm{1}+{i}\right)−\mathrm{1}} \\ $$$$\:\:\:\:\:=\left({P}−\frac{{M}}{{i}}\right)\left(\mathrm{1}+{i}\right)^{{n}} +\frac{{M}}{{i}} \\ $$$$ \\ $$$${if}\:{you}\:{want}\:{to}\:{have}\:{paid}\:{back}\:{fully} \\ $$$${after}\:{n}\:{months},\:{then}\:{P}_{{n}} =\mathrm{0},\:{i}.{e}. \\ $$$$\left({P}−\frac{{M}}{{i}}\right)\left(\mathrm{1}+{i}\right)^{{n}} +\frac{{M}}{{i}}=\mathrm{0} \\ $$$$\Rightarrow{P}=\frac{{M}}{{i}}\left[\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+{i}\right)^{{n}} }\right] \\ $$$$ \\ $$$${in}\:{current}\:{example}: \\ $$$${r}=\mathrm{5\%}\:\Rightarrow{i}=\frac{{r}}{\mathrm{12}}=\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}} \\ $$$${M}=\mathrm{2500}\:\$ \\ $$$${n}=\mathrm{30}×\mathrm{12}=\mathrm{360}\:{months} \\ $$$${P}=\frac{\mathrm{2500}}{\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}}\left[\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}\right)^{\mathrm{30}×\mathrm{12}} }\right]=\mathrm{465704}\:\$ \\ $$
Commented by Tawa11 last updated on 13/Jan/24
$$\mathrm{Wow}\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 13/Jan/24
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$