Menu Close

XYZ-Ltd-wants-to-borrow-money-to-finance-a-project-They-can-pay-N2500-monthly-in-repayments-If-the-interest-rate-is-5-and-the-load-will-be-paid-back-fully-in-30-years-how-much-can-the-company-affo




Question Number 203222 by Tawa11 last updated on 12/Jan/24
XYZ Ltd wants to borrow money to finance a project.  They can pay N2500 monthly in repayments. If the  interest rate is 5% and the load will be paid back  fully in 30 years, how much can the company afford  to borrow?
XYZ Ltd wants to borrow money to finance a project.
They can pay N2500 monthly in repayments. If the
interest rate is 5% and the load will be paid back
fully in 30 years, how much can the company afford
to borrow?
Commented by mr W last updated on 13/Jan/24
P=((2500)/((0.05)/(12)))(1−(1/((1+((0.05)/(12)))^(30×12) )))≈465700  the derivation of formula see below.
$${P}=\frac{\mathrm{2500}}{\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}}\left(\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}\right)^{\mathrm{30}×\mathrm{12}} }\right)\approx\mathrm{465700} \\ $$$${the}\:{derivation}\:{of}\:{formula}\:{see}\:{below}. \\ $$
Answered by mr W last updated on 13/Jan/24
say the loan you take from the bank  is P. the (yearly) interest rate is r.  the mouthly payment is M.  the mouthly interest rate is i=(r/(12)).  at the very beginning:  the amount of money you own  the bank is P_0 =P.    after one month:  the amount of money you own  the bank is   P_1 =P(1+i)−M.    after 2 months:  the amount of money you own  the bank is   P_2 =P_1 (1+i)−M       =P(1+i)^2 −M(1+i)−M    after 3 months:  the amount of money you own  the bank is   P_3 =P_2 (1+i)−M       =P(1+i)^3 −M(1+i)^2 −M(1+i)−M  .......  after n months:  the amount of money you own  the bank is   P_n =P_(n−1) (1+i)−M       =P(1+i)^n −M(1+i)^(n−1) −M(1+i)^(n−2) −...−M(1+i)−M       =P(1+i)^n −M[(1+i)^(n−1) +(1+i)^(n−2) +...+(1+i)+1]       =P(1+i)^n −M×(((1+i)^n −1)/((1+i)−1))       =(P−(M/i))(1+i)^n +(M/i)    if you want to have paid back fully  after n months, then P_n =0, i.e.  (P−(M/i))(1+i)^n +(M/i)=0  ⇒P=(M/i)[1−(1/((1+i)^n ))]    in current example:  r=5% ⇒i=(r/(12))=((0.05)/(12))  M=2500 $  n=30×12=360 months  P=((2500)/((0.05)/(12)))[1−(1/((1+((0.05)/(12)))^(30×12) ))]=465704 $
$${say}\:{the}\:{loan}\:{you}\:{take}\:{from}\:{the}\:{bank} \\ $$$${is}\:{P}.\:{the}\:\left({yearly}\right)\:{interest}\:{rate}\:{is}\:{r}. \\ $$$${the}\:{mouthly}\:{payment}\:{is}\:{M}. \\ $$$${the}\:{mouthly}\:{interest}\:{rate}\:{is}\:{i}=\frac{{r}}{\mathrm{12}}. \\ $$$${at}\:{the}\:{very}\:{beginning}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\:{P}_{\mathrm{0}} ={P}. \\ $$$$ \\ $$$${after}\:{one}\:{month}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{\mathrm{1}} ={P}\left(\mathrm{1}+{i}\right)−{M}. \\ $$$$ \\ $$$${after}\:\mathrm{2}\:{months}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{\mathrm{2}} ={P}_{\mathrm{1}} \left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{\mathrm{2}} −{M}\left(\mathrm{1}+{i}\right)−{M} \\ $$$$ \\ $$$${after}\:\mathrm{3}\:{months}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{\mathrm{3}} ={P}_{\mathrm{2}} \left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{\mathrm{3}} −{M}\left(\mathrm{1}+{i}\right)^{\mathrm{2}} −{M}\left(\mathrm{1}+{i}\right)−{M} \\ $$$$……. \\ $$$${after}\:{n}\:{months}: \\ $$$${the}\:{amount}\:{of}\:{money}\:{you}\:{own} \\ $$$${the}\:{bank}\:{is}\: \\ $$$${P}_{{n}} ={P}_{{n}−\mathrm{1}} \left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{{n}} −{M}\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{1}} −{M}\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{2}} −…−{M}\left(\mathrm{1}+{i}\right)−{M} \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{{n}} −{M}\left[\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{1}} +\left(\mathrm{1}+{i}\right)^{{n}−\mathrm{2}} +…+\left(\mathrm{1}+{i}\right)+\mathrm{1}\right] \\ $$$$\:\:\:\:\:={P}\left(\mathrm{1}+{i}\right)^{{n}} −{M}×\frac{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}{\left(\mathrm{1}+{i}\right)−\mathrm{1}} \\ $$$$\:\:\:\:\:=\left({P}−\frac{{M}}{{i}}\right)\left(\mathrm{1}+{i}\right)^{{n}} +\frac{{M}}{{i}} \\ $$$$ \\ $$$${if}\:{you}\:{want}\:{to}\:{have}\:{paid}\:{back}\:{fully} \\ $$$${after}\:{n}\:{months},\:{then}\:{P}_{{n}} =\mathrm{0},\:{i}.{e}. \\ $$$$\left({P}−\frac{{M}}{{i}}\right)\left(\mathrm{1}+{i}\right)^{{n}} +\frac{{M}}{{i}}=\mathrm{0} \\ $$$$\Rightarrow{P}=\frac{{M}}{{i}}\left[\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+{i}\right)^{{n}} }\right] \\ $$$$ \\ $$$${in}\:{current}\:{example}: \\ $$$${r}=\mathrm{5\%}\:\Rightarrow{i}=\frac{{r}}{\mathrm{12}}=\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}} \\ $$$${M}=\mathrm{2500}\:\$ \\ $$$${n}=\mathrm{30}×\mathrm{12}=\mathrm{360}\:{months} \\ $$$${P}=\frac{\mathrm{2500}}{\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}}\left[\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{0}.\mathrm{05}}{\mathrm{12}}\right)^{\mathrm{30}×\mathrm{12}} }\right]=\mathrm{465704}\:\$ \\ $$
Commented by Tawa11 last updated on 13/Jan/24
Wow I really appreciate your time sir.
$$\mathrm{Wow}\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 13/Jan/24
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *