Menu Close

If-x-2019-1-3-1-Find-x-1-3-6-x-1-2-12x-3-




Question Number 203245 by hardmath last updated on 13/Jan/24
If   x = ((2019))^(1/3)  + 1  Find:  (x + 1)^3 −6∙(x + 1)^2  + 12x − 3
$$\mathrm{If}\:\:\:\mathrm{x}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{2019}}\:+\:\mathrm{1} \\ $$$$\mathrm{Find}: \\ $$$$\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{3}} −\mathrm{6}\centerdot\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2}} \:+\:\mathrm{12x}\:−\:\mathrm{3} \\ $$
Answered by mr W last updated on 13/Jan/24
say t=x−1=((2019))^(1/3)   ⇒t^3 =2019  (x+1)^3 −6(x+1)^2 +12x+9  =(x−1+2)^3 −6(x−1+2)^2 +12(x−1+1)+9  =(t+2)^3 −6(t+2)^2 +12(t+1)+9  =t^3 +6t^2 +12t+8−6(t^2 +4t+4)+12t+12+9  =t^3 +5  =2019+5  =2024
$${say}\:{t}={x}−\mathrm{1}=\sqrt[{\mathrm{3}}]{\mathrm{2019}} \\ $$$$\Rightarrow{t}^{\mathrm{3}} =\mathrm{2019} \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{6}\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{12}{x}+\mathrm{9} \\ $$$$=\left({x}−\mathrm{1}+\mathrm{2}\right)^{\mathrm{3}} −\mathrm{6}\left({x}−\mathrm{1}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{12}\left({x}−\mathrm{1}+\mathrm{1}\right)+\mathrm{9} \\ $$$$=\left({t}+\mathrm{2}\right)^{\mathrm{3}} −\mathrm{6}\left({t}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{12}\left({t}+\mathrm{1}\right)+\mathrm{9} \\ $$$$={t}^{\mathrm{3}} +\mathrm{6}{t}^{\mathrm{2}} +\mathrm{12}{t}+\mathrm{8}−\mathrm{6}\left({t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{4}\right)+\mathrm{12}{t}+\mathrm{12}+\mathrm{9} \\ $$$$={t}^{\mathrm{3}} +\mathrm{5} \\ $$$$=\mathrm{2019}+\mathrm{5} \\ $$$$=\mathrm{2024} \\ $$
Commented by hardmath last updated on 13/Jan/24
Dear professor, answer: 2012
$$\mathrm{Dear}\:\mathrm{professor},\:\mathrm{answer}:\:\mathrm{2012} \\ $$
Commented by mr W last updated on 13/Jan/24
can′t you see that i have changed  the  question purposely to +9 in order to  get a nice 2024 instead of  2012?
$${can}'{t}\:{you}\:{see}\:{that}\:{i}\:{have}\:{changed}\:\:{the} \\ $$$${question}\:{purposely}\:{to}\:+\mathrm{9}\:{in}\:{order}\:{to} \\ $$$${get}\:{a}\:{nice}\:\mathrm{2024}\:{instead}\:{of}\:\:\mathrm{2012}? \\ $$
Answered by Rasheed.Sindhi last updated on 13/Jan/24
(x+1)^3 −6(x+1)^2 +12(x+1)−15  let x+1=y  y^3 −6y^2 +12y−15  y^3 −6y(y−2)−15  y^3 −3y(y−2)−8−7  (y−2)^3 −7  (x+1−2)^3 −7  (((2019))^(1/3)  + 1−1)^3 −7  2019−7=2012
$$\left({x}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{6}\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{12}\left({x}+\mathrm{1}\right)−\mathrm{15} \\ $$$${let}\:{x}+\mathrm{1}={y} \\ $$$${y}^{\mathrm{3}} −\mathrm{6}{y}^{\mathrm{2}} +\mathrm{12}{y}−\mathrm{15} \\ $$$${y}^{\mathrm{3}} −\mathrm{6}{y}\left({y}−\mathrm{2}\right)−\mathrm{15} \\ $$$${y}^{\mathrm{3}} −\mathrm{3}{y}\left({y}−\mathrm{2}\right)−\mathrm{8}−\mathrm{7} \\ $$$$\left({y}−\mathrm{2}\right)^{\mathrm{3}} −\mathrm{7} \\ $$$$\left({x}+\mathrm{1}−\mathrm{2}\right)^{\mathrm{3}} −\mathrm{7} \\ $$$$\left(\sqrt[{\mathrm{3}}]{\mathrm{2019}}\:+\:\mathrm{1}−\mathrm{1}\right)^{\mathrm{3}} −\mathrm{7} \\ $$$$\mathrm{2019}−\mathrm{7}=\mathrm{2012} \\ $$
Commented by Rasheed.Sindhi last updated on 13/Jan/24
May be the book, in which the  answer 2012 is written, was   published in 2012 and by then   2012 was as nice as 2024  today. :)
$${May}\:{be}\:{the}\:{book},\:{in}\:{which}\:{the} \\ $$$${answer}\:\mathrm{2012}\:{is}\:{written},\:{was}\: \\ $$$${published}\:{in}\:\mathrm{2012}\:{and}\:{by}\:{then} \\ $$$$\:\mathrm{2012}\:{was}\:{as}\:{nice}\:{as}\:\mathrm{2024} \\ $$$$\left.{today}.\::\right) \\ $$
Commented by hardmath last updated on 13/Jan/24
My dear professors,    I think years are not important)
$$\mathrm{My}\:\mathrm{dear}\:\mathrm{professors}, \\ $$$$ \\ $$I think years are not important)

Leave a Reply

Your email address will not be published. Required fields are marked *