Menu Close

lim-x-0-x-tan-pi-2-1-x-




Question Number 203247 by mathlove last updated on 13/Jan/24
lim_(x→0)  x tan(π/2)(1+x)=?
limx0xtanπ2(1+x)=?
Answered by MM42 last updated on 13/Jan/24
=lim_(x→0)  −xcot(π/2)x=lim_(x→0)  −(((π/2)xcos(π/2)x)/(sin(π/2)x))×(2/π)  = −(2/π) ✓
=limx0xcotπ2x=limx0π2xcosπ2xsinπ2x×2π=2π
Commented by mathlove last updated on 13/Jan/24
way tan(π/2)(1+x)=−cotx
waytanπ2(1+x)=cotx
Commented by MM42 last updated on 13/Jan/24
ok  −cot(π/2)x
okcotπ2x
Answered by mr W last updated on 13/Jan/24
lim_(x→0) x tan (π/2)(1+x)  =lim_(x→0) ((x sin ((π/2)+((πx)/2)))/(cos ((π/2)+((πx)/2))))  =lim_(x→0) ((x sin ((π/2)−((πx)/2)))/(−cos ((π/2)−((πx)/2))))  =lim_(x→0) ((x cos (((πx)/2)))/(−sin (((πx)/2))))  =−(2/π)lim_(x→0) (((((πx)/2)))/(sin (((πx)/2))))×cos (((πx)/2))  =−(2/π)
limx0xtanπ2(1+x)=limx0xsin(π2+πx2)cos(π2+πx2)=limx0xsin(π2πx2)cos(π2πx2)=limx0xcos(πx2)sin(πx2)=2πlimx0(πx2)sin(πx2)×cos(πx2)=2π
Commented by mathlove last updated on 13/Jan/24
thats right  thanks sir
thatsrightthankssir

Leave a Reply

Your email address will not be published. Required fields are marked *