Menu Close

lim-x-0-x-tan-pi-2-1-x-




Question Number 203247 by mathlove last updated on 13/Jan/24
lim_(x→0)  x tan(π/2)(1+x)=?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}\:{tan}\frac{\pi}{\mathrm{2}}\left(\mathrm{1}+{x}\right)=? \\ $$
Answered by MM42 last updated on 13/Jan/24
=lim_(x→0)  −xcot(π/2)x=lim_(x→0)  −(((π/2)xcos(π/2)x)/(sin(π/2)x))×(2/π)  = −(2/π) ✓
$$={lim}_{{x}\rightarrow\mathrm{0}} \:−{xcot}\frac{\pi}{\mathrm{2}}{x}={lim}_{{x}\rightarrow\mathrm{0}} \:−\frac{\frac{\pi}{\mathrm{2}}{xcos}\frac{\pi}{\mathrm{2}}{x}}{{sin}\frac{\pi}{\mathrm{2}}{x}}×\frac{\mathrm{2}}{\pi} \\ $$$$=\:−\frac{\mathrm{2}}{\pi}\:\checkmark \\ $$$$ \\ $$
Commented by mathlove last updated on 13/Jan/24
way tan(π/2)(1+x)=−cotx
$${way}\:{tan}\frac{\pi}{\mathrm{2}}\left(\mathrm{1}+{x}\right)=−{cotx} \\ $$
Commented by MM42 last updated on 13/Jan/24
ok  −cot(π/2)x
$${ok} \\ $$$$−{cot}\frac{\pi}{\mathrm{2}}{x} \\ $$
Answered by mr W last updated on 13/Jan/24
lim_(x→0) x tan (π/2)(1+x)  =lim_(x→0) ((x sin ((π/2)+((πx)/2)))/(cos ((π/2)+((πx)/2))))  =lim_(x→0) ((x sin ((π/2)−((πx)/2)))/(−cos ((π/2)−((πx)/2))))  =lim_(x→0) ((x cos (((πx)/2)))/(−sin (((πx)/2))))  =−(2/π)lim_(x→0) (((((πx)/2)))/(sin (((πx)/2))))×cos (((πx)/2))  =−(2/π)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}\:\mathrm{tan}\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}+{x}\right) \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}+\frac{\pi{x}}{\mathrm{2}}\right)}{\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}+\frac{\pi{x}}{\mathrm{2}}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\pi{x}}{\mathrm{2}}\right)}{−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\pi{x}}{\mathrm{2}}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\:\mathrm{cos}\:\left(\frac{\pi{x}}{\mathrm{2}}\right)}{−\mathrm{sin}\:\left(\frac{\pi{x}}{\mathrm{2}}\right)} \\ $$$$=−\frac{\mathrm{2}}{\pi}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\pi{x}}{\mathrm{2}}\right)}{\mathrm{sin}\:\left(\frac{\pi{x}}{\mathrm{2}}\right)}×\mathrm{cos}\:\left(\frac{\pi{x}}{\mathrm{2}}\right) \\ $$$$=−\frac{\mathrm{2}}{\pi} \\ $$
Commented by mathlove last updated on 13/Jan/24
thats right  thanks sir
$${thats}\:{right} \\ $$$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *