Question Number 203232 by Mathstar last updated on 13/Jan/24
Answered by mr W last updated on 13/Jan/24
Commented by mr W last updated on 13/Jan/24
$${center}\:{of}\:{circle}\:{at}\:{C}\left({h},\:{k}\right) \\ $$$${radius}\:{of}\:{circle}\:{r} \\ $$$${y}={x}−{x}^{\mathrm{3}} \\ $$$${y}'=\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \\ $$$${at}\:{point}\:{O}\left(\mathrm{0},\:\mathrm{0}\right): \\ $$$$\mathrm{tan}\:\varphi={y}'=\mathrm{1}\:\Rightarrow\varphi=\mathrm{45}° \\ $$$${at}\:{point}\:{P}\left({p},\:{q}\right): \\ $$$${q}={p}−{p}^{\mathrm{3}} \\ $$$$\mathrm{tan}\:\theta=−{y}'=\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$${h}={r}\:\mathrm{sin}\:\varphi=\frac{{r}}{\:\sqrt{\mathrm{2}}} \\ $$$${k}=−{r}\:\mathrm{cos}\:\varphi=−\frac{{r}}{\:\sqrt{\mathrm{2}}} \\ $$$${h}={p}−{r}\:\mathrm{sin}\:\theta \\ $$$${k}={q}−{r}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{p}−{r}\:\mathrm{sin}\:\theta=\frac{{r}}{\:\sqrt{\mathrm{2}}}\:\Rightarrow{p}=\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{sin}\:\theta\right){r} \\ $$$$\Rightarrow{p}−{p}^{\mathrm{3}} −{r}\:\mathrm{cos}\:\theta=−\frac{{r}}{\:\sqrt{\mathrm{2}}}\:\Rightarrow{p}\left(\mathrm{1}−{p}^{\mathrm{2}} \right)=\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\mathrm{cos}\:\theta\right){r} \\ $$$$\mathrm{1}−{p}^{\mathrm{2}} =\frac{−\mathrm{1}+\sqrt{\mathrm{2}}\:\mathrm{cos}\:\theta}{\mathrm{1}+\sqrt{\mathrm{2}}\:\mathrm{sin}\:\theta} \\ $$$$\mathrm{1}−{p}^{\mathrm{2}} =\frac{−\mathrm{1}+\sqrt{\mathrm{2}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }}}{\mathrm{1}+\sqrt{\mathrm{2}}×\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$$$\Rightarrow\mathrm{1}−{p}^{\mathrm{2}} =\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{1}+\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}+\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }+\sqrt{\mathrm{2}}\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{1024} \\ $$$${r}=\frac{{p}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }}}\approx\mathrm{0}.\mathrm{6712}\:\checkmark \\ $$
Commented by mr W last updated on 13/Jan/24
Commented by mr W last updated on 13/Jan/24
Commented by Mathstar last updated on 13/Jan/24
Thank you
Commented by MathematicalUser2357 last updated on 20/Jan/24
$${r}=\frac{\mathrm{4}\sqrt{\mathrm{3}+\mathrm{3}\sqrt{\mathrm{7}}}}{\:\mathrm{6}\sqrt{\mathrm{2}}+\mathrm{3}\sqrt{\mathrm{14}}} \\ $$
Commented by mr W last updated on 20/Jan/24
$${i}\:{havn}'{t}\:{tried}\:{to}\:{get}\:{the}\:{exact}\:{solution}. \\ $$$${can}\:{you}\:{show}\:{how}\:{you}\:{solved}? \\ $$