Menu Close

f-x-1-x-2-x-if-x-0-2-if-x-0-study-the-continuty-of-f-in-0-




Question Number 203291 by zahaku last updated on 14/Jan/24
f(x)={1+((√x^2 )/x)   if x#0                    2  if  x=0  study the continuty of f in 0
$${f}\left({x}\right)=\left\{\mathrm{1}+\frac{\sqrt{{x}^{\mathrm{2}} }}{{x}}\:\:\:{if}\:{x}#\mathrm{0}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:{if}\:\:{x}=\mathrm{0} \\ $$$${study}\:{the}\:{continuty}\:{of}\:{f}\:{in}\:\mathrm{0} \\ $$
Answered by esmaeil last updated on 15/Jan/24
f(x)= { ((1+((∣x∣)/x)    if  x≠0)),((2               if  x=0)) :}     lim_(x→0^+ )   f(x)=1+1=2=f(0)  lim_(x→0^− )   f(x)=1−1=0≠f(0)      →not  continuty
$${f}\left({x}\right)=\begin{cases}{\mathrm{1}+\frac{\mid{x}\mid}{{x}}\:\:\:\:{if}\:\:{x}\neq\mathrm{0}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:\:{x}=\mathrm{0}}\end{cases}\:\:\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:{f}\left({x}\right)=\mathrm{1}+\mathrm{1}=\mathrm{2}={f}\left(\mathrm{0}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\:{f}\left({x}\right)=\mathrm{1}−\mathrm{1}=\mathrm{0}\neq{f}\left(\mathrm{0}\right) \\ $$$$\:\:\:\:\rightarrow{not}\:\:{continuty} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *