Menu Close

Find-lim-x-0-1-cos4x-x-2-




Question Number 203288 by hardmath last updated on 14/Jan/24
Find:   lim_(x→0)  ((1 − cos4x)/x^2 ) = ?
Find:limx01cos4xx2=?
Answered by MM42 last updated on 14/Jan/24
=lim_(x→0)  ((2sin^2 2x)/x^2 )   =lim_(x→0)  8(((sin2x)/(2x)))^2 =8 ✓
=limx02sin22xx2=limx08(sin2x2x)2=8
Commented by hardmath last updated on 14/Jan/24
thankyou dearprofessor
thankyoudearprofessor
Answered by Calculusboy last updated on 15/Jan/24
Solution: NB that  lim_(x→0) ((1−cosax)/x^2 )=(a^2 /2)  then; lim_(x→0) ((1−cos4x)/x^2 )=(4^2 /2)=((16)/2)=8  Mf
Solution:NBthatlimx01cosaxx2=a22then;limx01cos4xx2=422=162=8Mf
Answered by dimentri last updated on 15/Jan/24
= lim_(x→0)  ((1−cos^2 4x)/(x^2 (1+cos 4x)))   = lim_(x→0)  (((sin 4x)/x))^2 . lim_(x→0)  (1/(1+cos 4x))   = 16×(1/2)= 8
=limx01cos24xx2(1+cos4x)=limx0(sin4xx)2.limx011+cos4x=16×12=8

Leave a Reply

Your email address will not be published. Required fields are marked *