Question Number 203309 by hardmath last updated on 15/Jan/24
$$\mathrm{If}\:\:\:\mathrm{z}_{\mathrm{1}} =\:\mathrm{3}\:+\:\mathrm{3}\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{i}}\:\:\:\mathrm{and}\:\:\:\mathrm{z}_{\mathrm{2}} =\:-\mathrm{1}\:−\:\sqrt{\mathrm{3}}\:\boldsymbol{\mathrm{i}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{z}_{\mathrm{1}} ^{\:\mathrm{3}} }{\mathrm{z}_{\mathrm{2}} ^{\:\mathrm{6}} }\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 16/Jan/24
$${z}_{\mathrm{1}} =\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{3}}\:{i}\right)\:\wedge\:{z}_{\mathrm{2}} =−\left(\mathrm{1}+\sqrt{\mathrm{3}}\:{i}\right) \\ $$$$\Rightarrow{z}_{\mathrm{1}} =−\mathrm{3}{z}_{\mathrm{2}} \\ $$$$\frac{\mathrm{z}_{\mathrm{1}} ^{\:\mathrm{3}} }{\mathrm{z}_{\mathrm{2}} ^{\:\mathrm{6}} }\:=\frac{\left(−\mathrm{3}{z}_{\mathrm{2}} \right)^{\mathrm{3}} }{{z}_{\mathrm{2}} ^{\mathrm{6}} }=\frac{−\mathrm{27}{z}_{\mathrm{2}} ^{\mathrm{3}} }{{z}_{\mathrm{2}} ^{\mathrm{6}} }=\frac{−\mathrm{27}}{{z}_{\mathrm{2}} ^{\mathrm{3}} } \\ $$$$\: \\ $$$${z}_{\mathrm{2}} +\mathrm{1}=−\sqrt{\mathrm{3}}\:{i}\Rightarrow{z}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}{z}_{\mathrm{2}} +\mathrm{1}=−\mathrm{3} \\ $$$${z}_{\mathrm{2}} ^{\mathrm{2}} =−\mathrm{2}{z}_{\mathrm{2}} −\mathrm{4}\Rightarrow{z}_{\mathrm{2}} ^{\mathrm{3}} =−\mathrm{2}{z}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{4}{z}_{\mathrm{2}} \\ $$$$\:=−\mathrm{2}\left(−\mathrm{2}{z}_{\mathrm{2}} −\mathrm{4}\right)−\mathrm{4}{z}_{\mathrm{2}} =\mathrm{8} \\ $$$$\frac{\mathrm{z}_{\mathrm{1}} ^{\:\mathrm{3}} }{\mathrm{z}_{\mathrm{2}} ^{\:\mathrm{6}} }\:=\frac{−\mathrm{27}}{{z}_{\mathrm{2}} ^{\mathrm{3}} }=\frac{−\mathrm{27}}{\mathrm{8}}=−\frac{\mathrm{27}}{\mathrm{8}} \\ $$$$ \\ $$
Commented by hardmath last updated on 19/Jan/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{ser} \\ $$
Answered by behi834171 last updated on 15/Jan/24
$${z}_{\mathrm{1}} =\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{3}}{i}\right),{z}_{\mathrm{2}} =−\left(\mathrm{1}+\sqrt{\mathrm{3}}{i}\right),{z}_{\mathrm{1}} =−\mathrm{3}{z}_{\mathrm{2}} \\ $$$$\boldsymbol{{z}}_{\mathrm{2}} =−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\boldsymbol{{i}}\right)=−\mathrm{2}\left(\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{3}}+\boldsymbol{{i}}.\boldsymbol{{sin}}\frac{\boldsymbol{\pi}}{\mathrm{3}}\right)= \\ $$$$=−\mathrm{2}.\boldsymbol{{e}}^{\boldsymbol{{i}}.\frac{\boldsymbol{\pi}}{\mathrm{3}}} \Rightarrow\boldsymbol{{z}}_{\mathrm{2}} ^{\mathrm{3}} =\left[−\mathrm{2}\boldsymbol{{e}}^{\boldsymbol{{i}}.\frac{\boldsymbol{\pi}}{\mathrm{3}}} \right]^{\mathrm{3}} =−\mathrm{8}\boldsymbol{{e}}^{\boldsymbol{{i}}.\boldsymbol{\pi}} =+\mathrm{8} \\ $$$$\Rightarrow\frac{\boldsymbol{{z}}_{\mathrm{1}} ^{\mathrm{3}} }{\boldsymbol{{z}}_{\mathrm{2}} ^{\mathrm{6}} }=\left(\frac{\boldsymbol{{z}}_{\mathrm{1}} }{\boldsymbol{{z}}_{\mathrm{2}} }\right)^{\mathrm{3}} .\frac{\mathrm{1}}{\boldsymbol{{z}}_{\mathrm{2}} ^{\mathrm{3}} }=\left(−\mathrm{3}\right)^{\mathrm{3}} .\frac{\mathrm{1}}{\mathrm{8}}=−\frac{\mathrm{27}}{\:\mathrm{8}}\:\:.\blacksquare \\ $$$$\left[\boldsymbol{{note}}!\:\:\:\:\:\boldsymbol{{e}}^{\boldsymbol{{i}}.\boldsymbol{\pi}} =\boldsymbol{{cos}\pi}+\boldsymbol{{i}}.\boldsymbol{{sin}\pi}=−\mathrm{1}\right] \\ $$
Commented by hardmath last updated on 19/Jan/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{ser} \\ $$
Answered by Rasheed.Sindhi last updated on 16/Jan/24
$${z}_{\mathrm{1}} −\mathrm{3}=\mathrm{3}\sqrt{\mathrm{3}}\:{i} \\ $$$${z}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{6}{z}_{\mathrm{1}} +\mathrm{9}=−\mathrm{27}\Rightarrow{z}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{6}{z}_{\mathrm{1}} −\mathrm{36} \\ $$$$\Rightarrow{z}_{\mathrm{1}} ^{\mathrm{3}} =\mathrm{6}{z}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{36}{z}_{\mathrm{1}} =\mathrm{6}\left(\mathrm{6}{z}_{\mathrm{1}} −\mathrm{36}\right)−\mathrm{36}{z}_{\mathrm{1}} =−\mathrm{216} \\ $$$$\: \\ $$$${z}_{\mathrm{2}} +\mathrm{1}=−\sqrt{\mathrm{3}}\:{i} \\ $$$${z}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2}{z}_{\mathrm{2}} +\mathrm{1}=−\mathrm{3}\Rightarrow{z}_{\mathrm{2}} ^{\mathrm{2}} =−\mathrm{2}{z}_{\mathrm{2}} −\mathrm{4} \\ $$$$\Rightarrow{z}_{\mathrm{2}} ^{\mathrm{3}} =−\mathrm{2}{z}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{4}{z}_{\mathrm{2}} =−\mathrm{2}\left(−\mathrm{2}{z}_{\mathrm{2}} −\mathrm{4}\right)−\mathrm{4}{z}_{\mathrm{2}} =\mathrm{8} \\ $$$$\:\Rightarrow{z}_{\mathrm{2}} ^{\mathrm{6}} =\mathrm{64} \\ $$$$\: \\ $$$$\blacktriangleright\frac{{z}_{\mathrm{1}} ^{\mathrm{3}} }{{z}_{\mathrm{2}} ^{\mathrm{6}} }=\frac{−\mathrm{216}}{\mathrm{64}}=−\frac{\mathrm{27}}{\mathrm{8}} \\ $$