Menu Close

find-the-ranges-of-value-of-x-for-which-series-convergent-or-divergent-n-1-n-1-n-3-x-n-




Question Number 203329 by Calculusboy last updated on 16/Jan/24
find the ranges of value of x for which   series convergent or divergent  𝚺_(n=1) ^∞ (((n+1))/n^3 )x^n
findtherangesofvalueofxforwhichseriesconvergentordivergentn=1(n+1)n3xn
Answered by Mathspace last updated on 17/Jan/24
u_n (x)=((n+1)/n^3 )x^n   ∣((u_(n+1) (x))/(u_n (x)))∣=∣((((n+2)/((n+1)^3 ))x^(n+1) )/(((n+1)/n^3 )x^n ))∣  =((n+2)/((n+1)^3 ))×(n^3 /(n+1))∣x∣  =((n/(n+1)))^3 .((n+2)/(n+1))∣x∣→∣x∣(n→+∞)  si ∣x∣<1 the serie cv and r=1  si ∣x∣>1 the serie diverges  ifx=1 u_n (x)=((n+1)/n^3 )∼(1/n^2 )  Σ(1/n^2 )cv ⇒Σu_n (x) cv  if=x=−1  u_n (x)=(((n+1))/n^3 )(−1)^n   Σu_n (x)is a alternating serie  ⇒Σu_n (x) cv.
un(x)=n+1n3xnun+1(x)un(x)∣=∣n+2(n+1)3xn+1n+1n3xn=n+2(n+1)3×n3n+1x=(nn+1)3.n+2n+1x∣→∣x(n+)six∣<1theseriecvandr=1six∣>1theseriedivergesifx=1un(x)=n+1n31n2Σ1n2cvΣun(x)cvif=x=1un(x)=(n+1)n3(1)nΣun(x)isaalternatingserieΣun(x)cv.
Commented by Calculusboy last updated on 17/Jan/24
nice sir
nicesir

Leave a Reply

Your email address will not be published. Required fields are marked *