Menu Close

calculate-0-a-2-e-x-2-y-2-dxdy-can-you-find-0-a-e-x-2-dx-a-gt-0-




Question Number 203349 by Mathspace last updated on 17/Jan/24
calculate ∫∫_([0,a]^2 )  e^(−x^2 −y^2 ) dxdy  can you find ∫_0 ^a e^(−x^2 ) dx    ?  a>0
calculate[0,a]2ex2y2dxdycanyoufind0aex2dx?a>0
Answered by witcher3 last updated on 17/Jan/24
the idee ∫∫_([0,∞]^2 ) f(x,y)dxdy=∫_0 ^(π/2) ∫_0 ^∞ f(rcos(a),rsin(a))rdrda  can′t hellp ther   for a>0 [0,a]^2  is a square if you try to fill it withe disc  is not easy   0≤rcos(z)≤a  0≤rsin(z)≤a  0<r<(a/(cos(z))),0≤r<(a/(sin(z)))  ⇒r<min((a/(cos(z))),(a/(sin(z))))  =∫_0 ^(π/4) ∫_0 ^(a/(cos(z))) re^(−r^2 ) drdz+∫_(π/4) ^(π/2) ∫_0 ^(a/(sin(z))) re^(−r^2 ) drdz  =∫_0 ^(π/4) ∫_0 ^(a/(cos(z))) 2re^(−r^2 ) drdz  =∫_0 ^(π/4) (−e^(−r^2 ) ]_0 ^(a/(cos(z))) dz  =∫_0 ^(π/4) 1−e^(−(a^2 /(cos^2 (z)))) dz  tg(z)=t  =∫_0 ^1 (1−e^(−a^2 (1+t^2 )) )(dt/(1+t^2 )),not easy from heree  we can use feyneman and givre answer withe “erf”  ∫_0 ^a e^(−x^2 ) dx....should bee first Quation=((√π)/2)erf(a)  erf(z)=(2/( (√π)))∫_0 ^z e^(−t^2 ) dt  Than ∫∫e^(−x^2 −y^2 ) dxdy=∫_0 ^a e^(−x^2 ) dx.∫_0 ^a e^(−y^2 ) dy  =(∫_0 ^a e^(−x^2 ) )^2 dx=(π/4).erf^2 (a)
theidee[0,]2f(x,y)dxdy=0π20f(rcos(a),rsin(a))rdrdacanthellptherfora>0[0,a]2isasquareifyoutrytofillitwithediscisnoteasy0rcos(z)a0rsin(z)a0<r<acos(z),0r<asin(z)r<min(acos(z),asin(z))=0π40acos(z)rer2drdz+π4π20asin(z)rer2drdz=0π40acos(z)2rer2drdz=0π4(er2]0acos(z)dz=0π41ea2cos2(z)dztg(z)=t=01(1ea2(1+t2))dt1+t2,noteasyfromhereewecanusefeynemanandgivreanswerwitheerf0aex2dx.shouldbeefirstQuation=π2erf(a)erf(z)=2π0zet2dtThanex2y2dxdy=0aex2dx.0aey2dy=(0aex2)2dx=π4.erf2(a)

Leave a Reply

Your email address will not be published. Required fields are marked *