Menu Close

For-the-series-5-5-2-5-4-5-8-1-n-1-5-2-n-1-find-an-expression-for-the-sum-of-the-first-n-terms-Also-if-the-series-converges-find-the-sum-to-




Question Number 203357 by Calculusboy last updated on 17/Jan/24
For the series 5−(5/2)+(5/4)−(5/8)+∙∙∙+(((−1)^(n−1) 5)/2^(n−1) )  find an expression for the sum of the first  n terms. Also if the series converges,  find the sum to ∞.
$$\boldsymbol{{For}}\:\boldsymbol{{the}}\:\boldsymbol{{series}}\:\mathrm{5}−\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{4}}−\frac{\mathrm{5}}{\mathrm{8}}+\centerdot\centerdot\centerdot+\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} \mathrm{5}}{\mathrm{2}^{\boldsymbol{{n}}−\mathrm{1}} } \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{an}}\:\boldsymbol{{expression}}\:\boldsymbol{{for}}\:\boldsymbol{{the}}\:\boldsymbol{{sum}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{first}} \\ $$$$\boldsymbol{{n}}\:\boldsymbol{{terms}}.\:\boldsymbol{{Also}}\:\boldsymbol{{if}}\:\boldsymbol{{the}}\:\boldsymbol{{series}}\:\boldsymbol{{converges}}, \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{sum}}\:\boldsymbol{{to}}\:\infty. \\ $$$$ \\ $$$$ \\ $$
Answered by mr W last updated on 17/Jan/24
G.P. with q=−(1/2)  S_n =((5(1−(−(1/2))^n ))/(1−(−(1/2))))=((10)/3)[1−(((−1)^n )/2^n )]  lim_(n→∞) S_n =((10)/3)
$${G}.{P}.\:{with}\:{q}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${S}_{{n}} =\frac{\mathrm{5}\left(\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \right)}{\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)}=\frac{\mathrm{10}}{\mathrm{3}}\left[\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{S}_{{n}} =\frac{\mathrm{10}}{\mathrm{3}} \\ $$
Commented by Calculusboy last updated on 17/Jan/24
nice solution sir
$$\boldsymbol{{nice}}\:\boldsymbol{{solution}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *