Menu Close

If-a-b-c-R-with-a-b-c-3-prove-that-1-a-6-b-6-3c-3-4-1-b-6-c-6-3a-3-4-1-c-6-a-6-3b-3-4-3-3-2-ab-bc-ac-




Question Number 203379 by York12 last updated on 18/Jan/24
If a,b,c ∈R^+  with a+b+c=3 prove that  (1/(a^6 +b^6 +3c^3 +4))+(1/(b^6 +c^6 +3a^3 +4))+(1/(c^6 +a^6 +3b^3 +4))≤(3/(3+2((√(ab))+(√(bc))+(√(ac)))))
$$\mathrm{If}\:{a},{b},{c}\:\in\mathbb{R}^{+} \:\mathrm{with}\:{a}+{b}+{c}=\mathrm{3}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{6}} +{b}^{\mathrm{6}} +\mathrm{3}{c}^{\mathrm{3}} +\mathrm{4}}+\frac{\mathrm{1}}{{b}^{\mathrm{6}} +{c}^{\mathrm{6}} +\mathrm{3}{a}^{\mathrm{3}} +\mathrm{4}}+\frac{\mathrm{1}}{{c}^{\mathrm{6}} +{a}^{\mathrm{6}} +\mathrm{3}{b}^{\mathrm{3}} +\mathrm{4}}\leqslant\frac{\mathrm{3}}{\mathrm{3}+\mathrm{2}\left(\sqrt{{ab}}+\sqrt{{bc}}+\sqrt{{ac}}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *