Menu Close

Question-203416




Question Number 203416 by Spillover last updated on 18/Jan/24
Answered by a.lgnaoui last updated on 19/Jan/24
       R=2r+BMcos 𝛂     (1)      BMsin 𝛂=r                    (2)     ⇒   { ((cos 𝛂=((R−2r)/(BM)))),((sin 𝛂=(r/( BM)))) :}  tan 𝛂=1 ⇒ =45     BM=r(√2)                    { ((((R−2r)/(BM))=((R−2r)/( r(√2))))),(((r/(BM))     =(1/( (√2))))) :}          (((1))/(2r)) ⇒   (R/(2r))=((2(√2) +1)/(2(√2)))
$$\:\: \\ $$$$\:\:\:\boldsymbol{\mathrm{R}}=\mathrm{2}\boldsymbol{\mathrm{r}}+\boldsymbol{\mathrm{BM}}\mathrm{cos}\:\boldsymbol{\alpha}\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\boldsymbol{\mathrm{BM}}\mathrm{sin}\:\boldsymbol{\alpha}=\boldsymbol{\mathrm{r}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\: \\ $$$$\Rightarrow\:\:\begin{cases}{\mathrm{cos}\:\boldsymbol{\alpha}=\frac{\boldsymbol{\mathrm{R}}−\mathrm{2}\boldsymbol{\mathrm{r}}}{\boldsymbol{\mathrm{BM}}}}\\{\mathrm{sin}\:\boldsymbol{\alpha}=\frac{\boldsymbol{\mathrm{r}}}{\:\boldsymbol{\mathrm{BM}}}}\end{cases} \\ $$$$\mathrm{tan}\:\boldsymbol{\alpha}=\mathrm{1}\:\Rightarrow\:=\mathrm{45}\:\:\:\:\:\boldsymbol{\mathrm{BM}}=\boldsymbol{\mathrm{r}}\sqrt{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\begin{cases}{\frac{\boldsymbol{\mathrm{R}}−\mathrm{2}\boldsymbol{\mathrm{r}}}{\boldsymbol{\mathrm{BM}}}=\frac{\boldsymbol{\mathrm{R}}−\mathrm{2}\boldsymbol{\mathrm{r}}}{\:\boldsymbol{\mathrm{r}}\sqrt{\mathrm{2}}}}\\{\frac{\boldsymbol{\mathrm{r}}}{\boldsymbol{\mathrm{BM}}}\:\:\:\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\end{cases} \\ $$$$\:\: \\ $$$$\:\:\:\:\frac{\left(\mathrm{1}\right)}{\mathrm{2}\boldsymbol{\mathrm{r}}}\:\Rightarrow\:\:\:\frac{\boldsymbol{\mathrm{R}}}{\mathrm{2}\boldsymbol{\mathrm{r}}}=\frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$$\:\: \\ $$
Commented by a.lgnaoui last updated on 19/Jan/24
Answered by mr W last updated on 19/Jan/24
Commented by mr W last updated on 19/Jan/24
(R−r)^2 =(2r)^2 +r^2 =5r^2   ⇒R−r=(√5)r  ⇒R=(1+(√5))r  ⇒(R/(2r))=((1+(√5))/2)=ϕ
$$\left({R}−{r}\right)^{\mathrm{2}} =\left(\mathrm{2}{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{5}{r}^{\mathrm{2}} \\ $$$$\Rightarrow{R}−{r}=\sqrt{\mathrm{5}}{r} \\ $$$$\Rightarrow{R}=\left(\mathrm{1}+\sqrt{\mathrm{5}}\right){r} \\ $$$$\Rightarrow\frac{{R}}{\mathrm{2}{r}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\varphi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *