Menu Close

Question-203471




Question Number 203471 by DEGWE last updated on 19/Jan/24
Answered by MathematicalUser2357 last updated on 20/Jan/24
=((lim_(x→0^+ ) x^(cosec x+cot x) )/(lim_(x→0^+ ) (cosec x+cot x)))  =((lim_(x→0^+ ) x^((1/(sin x))+(1/(tan x))) )/(lim_(x→0^+ ) ((1/(sin x))+(1/(tan x)))))  =((lim_(x→0^+ ) x^((1+((sin x)/(tan x)))/(sin x)) )/(lim_(x→0^+ ) ((1+((sin x)/(tan x)))/(sin x))))  =((lim_(x→0^+ ) x^((1+cos x)/(sin x)) )/(lim_(x→0^+ ) ((1+cos x)/(sin x))))  =(0/1)  =0
$$=\frac{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{x}^{\mathrm{cosec}\:{x}+\mathrm{cot}\:{x}} }{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\mathrm{cosec}\:{x}+\mathrm{cot}\:{x}\right)} \\ $$$$=\frac{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{x}^{\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{tan}\:{x}}} }{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{tan}\:{x}}\right)} \\ $$$$=\frac{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{x}^{\frac{\mathrm{1}+\frac{\mathrm{sin}\:{x}}{\mathrm{tan}\:{x}}}{\mathrm{sin}\:{x}}} }{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}+\frac{\mathrm{sin}\:{x}}{\mathrm{tan}\:{x}}}{\mathrm{sin}\:{x}}} \\ $$$$=\frac{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}{x}^{\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}} }{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}} \\ $$$$=\frac{\mathrm{0}}{\mathrm{1}} \\ $$$$=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *