Question Number 203502 by Frix last updated on 20/Jan/24

Commented by Frix last updated on 22/Jan/24

Commented by a.lgnaoui last updated on 22/Jan/24
![I just have an idea for z=a+ib and to trasforme to( cosx+isinx) ze^z =e z=e^(1−z) a+ib=e^((1−a)−ib) e^(−ib) =cos b−isin b a+ib=e^(1−a) ×(cos b−isin b) a−(cos b)e^(1−a) +i[(b+e^(1−a) (sin b)] { ((z=a+ib)),((cos be^(1−a) =0 sin be^(1−1) =0)) :} { ((ze^z −e=[(a−c)),((b=)) :} z=e^(1−z) =e^((1−a)−ib) (e^(1−a) /(cos b−isin b))=(a−cos be^(1−a) )+ i(b+e^(1−a) sin b) { ((e^(1−a) cos b=a−cos be^(1−a) )),((e^(1−a) sin b=b+sin be^(1−a) )) :} { ((a=2cos be^(1−a) )),((b=2sin be^(1−a) )) :} (a/b)=(1/(tan b)) a=(b/(tan b)) z=((b+ib)/(tan b))=e^((1−a)−ib) ⇒ { ((((b(1+i))/(tan b×e^(1−a) ))=e^(−ib) )),((=cos b−isin b)) :} { (((b/(tan be^(1−a) ))=cos b=−sin b=sin (−b))),((b=(𝛑/4))) :} donc (((π/4)(1+i))/e^(1−a) )=((√2)/2)(1−i) e^(1−a) =(π/(2(√2))) ⇒a=1−ln((π/(2(√2)))) (√(a^2 +b^2 )) (acos b−isin b) { (((b/( (√(a^2 +b^2 ))))=−(√2))),() :} ((a/b))^2 +1=4 (a/b)=(√3) b=a((√3)/3) z=a+ib z=[1−ln((𝛑/(2(√2))))]+[((√3)/3)(1−ln(π/(2(√2))))]i S={1;(1−ln((π/(2(√2)))))+i((√3)/3)(1−ln((π/( 2(√2))))} It is clear that there is many roots if we transcorme the[ expressiin in Argθ= { ((cos θ=((1−ln(π/2(√2) ))/( (√((1−ln(π/2(√2))^2 +1/3(1−lnπ/2(√2))^2 )))))),((sin θ=(((√3) /3)/( (√((2−ln(π/2(√(2)]^2 )) +1/3(2−lnπ/2(√2) )^2 )))))) :}](https://www.tinkutara.com/question/Q203580.png)
Answered by a.lgnaoui last updated on 20/Jan/24

Commented by Frix last updated on 20/Jan/24
