Menu Close

ze-z-e-Obviously-z-1-Now-find-at-least-one-solution-for-z-C-




Question Number 203502 by Frix last updated on 20/Jan/24
ze^z =e  Obviously z=1  Now find at least one solution for z∈C
zez=eObviouslyz=1NowfindatleastonesolutionforzC
Commented by Frix last updated on 22/Jan/24
See question 203570
Seequestion203570
Commented by a.lgnaoui last updated on 22/Jan/24
I just have an idea for   z=a+ib   and to trasforme to( cosx+isinx)  ze^z =e     z=e^(1−z)   a+ib=e^((1−a)−ib)   e^(−ib) =cos b−isin b  a+ib=e^(1−a) ×(cos b−isin b)    a−(cos b)e^(1−a) +i[(b+e^(1−a) (sin b)]   { ((z=a+ib)),((cos be^(1−a) =0     sin be^(1−1) =0)) :}   { ((ze^z −e=[(a−c)),((b=)) :}  z=e^(1−z) =e^((1−a)−ib)       (e^(1−a) /(cos b−isin b))=(a−cos be^(1−a) )+             i(b+e^(1−a) sin b)   { ((e^(1−a) cos b=a−cos be^(1−a) )),((e^(1−a) sin b=b+sin be^(1−a) )) :}     { ((a=2cos be^(1−a) )),((b=2sin be^(1−a) )) :}    (a/b)=(1/(tan b))    a=(b/(tan b))    z=((b+ib)/(tan b))=e^((1−a)−ib) ⇒     { ((((b(1+i))/(tan b×e^(1−a) ))=e^(−ib) )),((=cos b−isin b)) :}     { (((b/(tan be^(1−a) ))=cos b=−sin b=sin (−b))),((b=(𝛑/4))) :}  donc   (((π/4)(1+i))/e^(1−a) )=((√2)/2)(1−i)           e^(1−a) =(π/(2(√2)))     ⇒a=1−ln((π/(2(√2))))       (√(a^2 +b^2  )) (acos b−isin b)      { (((b/( (√(a^2 +b^2 ))))=−(√2))),() :}     ((a/b))^2 +1=4     (a/b)=(√3)     b=a((√3)/3)    z=a+ib      z=[1−ln((𝛑/(2(√2))))]+[((√3)/3)(1−ln(π/(2(√2))))]i             S={1;(1−ln((π/(2(√2)))))+i((√3)/3)(1−ln((π/( 2(√2))))}     It is clear that there is many    roots if we transcorme the[  expressiin in  Argθ=      { ((cos θ=((1−ln(π/2(√2) ))/( (√((1−ln(π/2(√2))^2 +1/3(1−lnπ/2(√2))^2 )))))),((sin θ=(((√3) /3)/( (√((2−ln(π/2(√(2)]^2 )) +1/3(2−lnπ/2(√2) )^2 )))))) :}
Ijusthaveanideaforz=a+ibandtotrasformeto(cosx+isinx)zez=ez=e1za+ib=e(1a)ibeib=cosbisinba+ib=e1a×(cosbisinb)a(cosb)e1a+i[(b+e1a(sinb)]{z=a+ibcosbe1a=0sinbe11=0{zeze=[(acb=z=e1z=e(1a)ibe1acosbisinb=(acosbe1a)+i(b+e1asinb){e1acosb=acosbe1ae1asinb=b+sinbe1a{a=2cosbe1ab=2sinbe1aab=1tanba=btanbz=b+ibtanb=e(1a)ib{b(1+i)tanb×e1a=eib=cosbisinb{btanbe1a=cosb=sinb=sin(b)b=π4doncπ4(1+i)e1a=22(1i)e1a=π22a=1ln(π22)a2+b2(acosbisinb){ba2+b2=2(ab)2+1=4ab=3b=a33z=a+ibz=[1ln(π22)]+[33(1lnπ22)]iS={1;(1ln(π22))+i33(1ln(π22)}Itisclearthatthereismanyrootsifwetranscormethe[expressiininArgθ={cosθ=1ln(π/22)(1ln(π/22)2+1/3(1lnπ/22)2sinθ=3/3(2ln(π/22)]2+1/3(2lnπ/22)2
Answered by a.lgnaoui last updated on 20/Jan/24
ze^z −e=0  lnz+z=1  Solution est donne par graphe    ze^z −e=(z−1)Q(z)  Q(z)=((ze^z −e)/(z−1))    solugiin pour  ((ze^z −e)/(z−1))  est[donne   par graphe
zeze=0lnz+z=1Solutionestdonnepargraphezeze=(z1)Q(z)Q(z)=zezez1solugiinpourzezez1est[donnepargraphe
Commented by Frix last updated on 20/Jan/24
There is only one real solution but there  are ∞ complex solutions.
Thereisonlyonerealsolutionbuttherearecomplexsolutions.

Leave a Reply

Your email address will not be published. Required fields are marked *