Menu Close

Determine-the-maximum-and-minimum-of-the-function-f-x-y-x-4-4x-2-y-2-2x-2-2y-2-1-Thank-you-




Question Number 203526 by Mastermind last updated on 21/Jan/24
Determine the maximum and minimum of  the function:  f(x,y)=x^4 +4x^2 y^2 −2x^2 +2y^2 −1    Thank you
Determinethemaximumandminimumofthefunction:f(x,y)=x4+4x2y22x2+2y21Thankyou
Answered by aleks041103 last updated on 21/Jan/24
let us see for which c∈R, ∃(x,y):f(x,y)=c  x^2 =a, y^2 =b  ⇒f=a^2 +4ab−2a+2b−1=c  (a^2 −2a−1)+2b(2a+1)=c  ⇒b=((−a^2 +2a+c+1)/(2a+1))=y^2 ≥0  also a=x^2 ≥0  −a^2 +2a+c+1=0⇒a_(1,2) =((−2±(√(8+4c)))/(−2))=1±(√(2+c))  2a+1=0 ⇒ a_3 =−1/2  ⇒a≥0, 2a+1>0    1st case: c<−2 ⇒ −a^2 +2a+1+c<0  ⇒b<0→contradiction    2nd case: c=−2 ⇒ −a^2 +2a+1+c≤0  where for a=1 and b=0  and for a>0, b<0 → contradict    3rd case: −1≥c>−2  ⇒b≥0 for 1−(√(2+c))≤a≤1+(√(2+c))    4th case: c>−1  ⇒b≥0 for 0≤a≤1+(√(2+c))    ⇒ for all c≥−2, ∃(x,y):f(x,y)=c    ⇒min of f(x,y) at  { ((x=±1)),((y=0)) :} with min(f)=−2  ∄max of f(x,y)
letusseeforwhichcR,(x,y):f(x,y)=cx2=a,y2=bf=a2+4ab2a+2b1=c(a22a1)+2b(2a+1)=cb=a2+2a+c+12a+1=y20alsoa=x20a2+2a+c+1=0a1,2=2±8+4c2=1±2+c2a+1=0a3=1/2a0,2a+1>01stcase:c<2a2+2a+1+c<0b<0contradiction2ndcase:c=2a2+2a+1+c0wherefora=1andb=0andfora>0,b<0contradict3rdcase:1c>2b0for12+ca1+2+c4thcase:c>1b0for0a1+2+cforallc2,(x,y):f(x,y)=cminoff(x,y)at{x=±1y=0withmin(f)=2maxoff(x,y)
Answered by AST last updated on 21/Jan/24
f(x,y): (x^2 −1)^2 +(2xy)^2 +(y(√2))^2 −2≥−2   (Equality:x=+_− 1,y=0)  No maximum,f(x,y)→∞ as ∣x∣,∣y∣→∞
f(x,y):(x21)2+(2xy)2+(y2)222(Equality:x=+1,y=0)Nomaximum,f(x,y)asx,y∣→

Leave a Reply

Your email address will not be published. Required fields are marked *