Question Number 203545 by Mastermind last updated on 21/Jan/24

Answered by AST last updated on 21/Jan/24
![b) n∣(A∪B)∪C∣=n[P∪C] where P=A∪B n(P∪C)=n(P)+n(C)−n(P∩C) =n(A)+n(B)+n(C)−n(A∩B)−n(P∩C) P∩C=(A∩B)∩C=(A∩C)∪(B∩C) n(PnC)=n(A∩C)+n(B∩C)−n[(A∩C)∩(B∩C)] ⇒n(A∪B∪C)=n(A)+n(B)+(C)−n(A∩B) −n(A∩C)−n(B∩C)+n(A∩B∩C) c) Suppose one of the sets ,say A, is not a subset of the other,B. Then,∃ a_1 ∈A s.t. a_1 ∉B ⇒n(A∪B)>n(A∩B)⇒A⊆B⇒n(A∩B)=n(A) Suppose B\A ≠∅⇒n(B\A)=k≥1 then n(A∪B)=n(A)+n(B)−n(A∩B)=n(B) =n(B\A)+n(A)=k+n(A)>n(A∩B) ⇒n(B\A)=∅⇒A=B](https://www.tinkutara.com/question/Q203548.png)
Commented by Mastermind last updated on 21/Jan/24

Commented by Mastermind last updated on 21/Jan/24

Commented by AST last updated on 21/Jan/24

Commented by Mastermind last updated on 21/Jan/24

Commented by Mastermind last updated on 21/Jan/24
