Question Number 203564 by mnjuly1970 last updated on 22/Jan/24
$$ \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{3}} \left({x}\right)}{{x}^{\:\mathrm{2}} }\:{dx}=\:?\:\:\:\:\: \\ $$
Answered by Mathspace last updated on 23/Jan/24
$${I}=\left[−\frac{\mathrm{1}}{{x}}{sin}^{\mathrm{3}} {x}\right]_{\mathrm{0}} ^{\infty} −\int_{\mathrm{0}} ^{\infty} \left(−\frac{\mathrm{1}}{{x}}\right)\mathrm{3}{cosx}\:{sin}^{\mathrm{2}} {x}\:{dx} \\ $$$$=\mathrm{3}\int_{\mathrm{0}} ^{\infty} \:\frac{{cosx}\:{sin}^{\mathrm{2}} {x}}{{x}}{dx} \\ $$$$=\mathrm{3}\int_{\mathrm{0}} ^{\infty} \frac{{cosx}\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right)}{\mathrm{2}{x}}{dx} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{cosx}−{cosxcos}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$$${cosx}\:{cos}\left(\mathrm{2}{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\mathrm{3}{x}\right)+{cosx}\right) \\ $$$$\Rightarrow{I}=\frac{\mathrm{3}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{cosx}−\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{3}{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{cosx}}{{x}}{dx} \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{{cosx}−{cos}\left(\mathrm{3}{x}\right)}{{x}}{dx} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\left({cosx}−{cos}\left(\mathrm{3}{x}\right)\right){e}^{−{ax}} }{{x}}{dx}\: \\ $$$$\left.{f}^{'} \left({a}\right)=−\int_{\mathrm{0}} ^{\infty} \left({cosx}\right){e}^{−{ax}} −{cos}\left(\mathrm{3}{x}\right){e}^{−{ax}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {cos}\left(\mathrm{3}{x}\right){e}^{−{ax}} {dx}−\int_{\mathrm{0}} ^{\infty} {cosx}\:{e}^{−{ax}} {dx} \\ $$$$={Re}\left(\int_{\mathrm{0}} ^{\infty} {e}^{\mathrm{3}{ix}−{ax}} {dx}\right)−{Re}\left(\int_{\mathrm{0}} ^{\infty} {e}^{{ix}−{ax}} {dx}\right) \\ $$$${but}\:\int_{\mathrm{0}} ^{\infty} {e}^{\left(−{a}+\mathrm{3}{i}\right){x}} {dx} \\ $$$$\left.=\frac{\mathrm{1}}{−{a}+\mathrm{3}{i}}{e}^{\left(−{a}+\mathrm{3}{i}\right)} \right]_{\mathrm{0}} ^{\infty} =\frac{\mathrm{1}}{{a}−\mathrm{3}{i}} \\ $$$$=\frac{{a}+\mathrm{3}{i}}{{a}^{\mathrm{2}} +\mathrm{9}}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{\left(−{a}+{i}\right){x}} {dx}=\left[\frac{\mathrm{1}}{−{a}+{i}}{e}^{\left(−{a}+{i}\right){x}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\mathrm{1}}{{a}−{i}}=\frac{{a}+{i}}{{a}^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow{f}^{'} \left({a}\right)=\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{9}}−\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{{a}^{\mathrm{2}} +\mathrm{9}}{{a}^{\mathrm{2}} +\mathrm{1}}\right)+{k} \\ $$$${k}={lim}_{{a}\rightarrow\infty} {f}\left({a}\right)=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{{a}^{\mathrm{2}} +\mathrm{9}}{{a}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{cosx}−{cos}\left(\mathrm{3}{x}\right)}{{x}}{dx}={f}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{9} \\ $$$$={ln}\mathrm{3}\:\Rightarrow{I}=\frac{\mathrm{3}}{\mathrm{4}}{ln}\mathrm{3} \\ $$
Commented by mnjuly1970 last updated on 24/Jan/24
$$\:{thanks}\:{alot}\:{sir} \\ $$$$\:\:{so}\:{nice}\:{solution} \\ $$