Menu Close

P-is-a-prime-number-P-gt-1000-If-P-r-mod-1000-how-many-value-of-r-




Question Number 203566 by BaliramKumar last updated on 22/Jan/24
′P′ is a prime number (P>1000).   If   P ≡ r (mod 1000). how many value of ′r′.
$$'\mathrm{P}'\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:\left(\mathrm{P}>\mathrm{1000}\right).\: \\ $$$$\mathrm{If}\:\:\:\mathrm{P}\:\equiv\:\mathrm{r}\:\left(\mathrm{mod}\:\mathrm{1000}\right).\:\mathrm{how}\:\mathrm{many}\:\mathrm{value}\:\mathrm{of}\:'\mathrm{r}'. \\ $$
Answered by MM42 last updated on 22/Jan/24
p=1000k+r  &  0<r<1000   ⇒“p” is prime number   ⇒“r” must be an odd number & r≠5k′  A={1,3,5,...,999}⇒n(A)=500  B={5,15,...,995}⇒n(B)=100  ans=500−100=400 ✓  for example  3001, 2003 , 4007 ,..., 1993 ,6997 ,1999 ,..
$${p}=\mathrm{1000}{k}+{r}\:\:\&\:\:\mathrm{0}<{r}<\mathrm{1000}\: \\ $$$$\Rightarrow“{p}''\:{is}\:{prime}\:{number}\: \\ $$$$\Rightarrow“{r}''\:{must}\:{be}\:{an}\:{odd}\:{number}\:\&\:{r}\neq\mathrm{5}{k}' \\ $$$${A}=\left\{\mathrm{1},\mathrm{3},\mathrm{5},…,\mathrm{999}\right\}\Rightarrow{n}\left({A}\right)=\mathrm{500} \\ $$$${B}=\left\{\mathrm{5},\mathrm{15},…,\mathrm{995}\right\}\Rightarrow{n}\left({B}\right)=\mathrm{100} \\ $$$${ans}=\mathrm{500}−\mathrm{100}=\mathrm{400}\:\checkmark \\ $$$${for}\:{example} \\ $$$$\mathrm{3001},\:\mathrm{2003}\:,\:\mathrm{4007}\:,…,\:\mathrm{1993}\:,\mathrm{6997}\:,\mathrm{1999}\:,.. \\ $$$$ \\ $$
Commented by BaliramKumar last updated on 23/Jan/24
Can we use Euler′s totient function?  I don′t know if  it′s true forever.  φ(1000) = φ[(2×5)^3 ] = (2−1)(5−1)2^(3−1) ×5^(3−1)  = 400
$$\mathrm{Can}\:\mathrm{we}\:\mathrm{use}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{totient}\:\mathrm{function}? \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{if}\:\:\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{forever}. \\ $$$$\phi\left(\mathrm{1000}\right)\:=\:\phi\left[\left(\mathrm{2}×\mathrm{5}\right)^{\mathrm{3}} \right]\:=\:\left(\mathrm{2}−\mathrm{1}\right)\left(\mathrm{5}−\mathrm{1}\right)\mathrm{2}^{\mathrm{3}−\mathrm{1}} ×\mathrm{5}^{\mathrm{3}−\mathrm{1}} \:=\:\mathrm{400} \\ $$
Commented by MM42 last updated on 23/Jan/24
I don′t khow
$${I}\:{don}'{t}\:{khow} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *