Menu Close

Reduce-a-differential-equation-x-ax-bx-cx-0-where-a-b-c-are-constants-to-an-equivalent-system-of-first-order-equation-x-1-x-x-2-x-x-3-x-Thank-you-




Question Number 203568 by Mastermind last updated on 22/Jan/24
Reduce a differential equation  x^(′′′)  + ax^(′′)  + bx^′  + cx = 0 (where a,b,c are  constants) to an equivalent system of first  order equation.  x_1 = x, x_2  = x^′ , x_3  = x^(′′)     Thank you
$$\mathrm{Reduce}\:\mathrm{a}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{x}^{'''} \:+\:\mathrm{ax}^{''} \:+\:\mathrm{bx}^{'} \:+\:\mathrm{cx}\:=\:\mathrm{0}\:\left(\mathrm{where}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\right. \\ $$$$\left.\mathrm{constants}\right)\:\mathrm{to}\:\mathrm{an}\:\mathrm{equivalent}\:\mathrm{system}\:\mathrm{of}\:\mathrm{first} \\ $$$$\mathrm{order}\:\mathrm{equation}. \\ $$$$\mathrm{x}_{\mathrm{1}} =\:\mathrm{x},\:\mathrm{x}_{\mathrm{2}} \:=\:\mathrm{x}^{'} ,\:\mathrm{x}_{\mathrm{3}} \:=\:\mathrm{x}^{''} \\ $$$$ \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *